Environmental Economics

- 1. Intro: Why monetize the environment?
- 2. How to monetize the environment.
 - a. Travel cost models
 - b. Averting expenditures
 - c. Hedonic property values, wages, and the value of a statistical life
 - d. Contingent valuation
- 3. Policy designs
 - a. Market-based policies: taxes and tradable permits
 - b. Grandfathering existing sources
 - c. Federalism
- 4. Effects of environmental regulations on firm location wages trade and the environmental

firm location, wages, trade ... and the environment.

The New York Times

Court Blocks E.P.A. Rule on Cross-State Pollution

By MATTHEW L. WALD Published: August 21, 2012

WASHINGTON — A federal appeals court on Tuesday overturned a federal rule that laid out how much air pollution states would have to clean up to avoid incurring violations in downwind states.

David J. Phillip/Associated Press The rule w as intended to address how to deal with states w hose plants pollute air in other states. The decision sends the <u>Environmental</u> <u>Protection Agency</u>, and perhaps even Congress, back to the drawing board in what has become a long and paralyzing argument over how to mesh a system of state-by-state regulation with the problem of industrial smokestacks pumping pollutants into a single atmosphere.

Why value the environment in \$?

- 1. For damage assessment in legal cases.
- 2. To choose among policies.
- 3. To choose the stringency of policy.

To choose among policies.

Cost of U.S. Environmental Regulations per Life Saved					
	Year	Cost per life saved			
Regulation	Enacted	(millions of 2012 \$)			
Trihalomethane in drinking water	1979	\$0.4			
Radionuclides standards for uranium mines	1984	7.2			
Benzene NESHAP (original)	1984	7.2			
Ethylene dibromide in drinking water	1991	12.0			
Benzene NESHAP (revised)	1988	12.9			
Ethylene oxide occupational exposure limit	1984	43.0			
Arsenic / copper NESHAP	1986	48.3			
Petroleum sludge hazardous waste listing	1990	58.0			
Cover / move uranium mill tailings (inactive)	1983	66.5			
Benzene NESHAP (revised)	1990	69.1			
Cover / move uranium mill tailings (active)	1983	94.5			
Asbestos ban	1989	232.3			
Benzene NESHAP (revised)	1990	352.9			
1,2-Dichloropropane in drinking water	1991	1,370.3			
Hazardous waste land disposal ban	1988	8,793.4			
Municipal solid waste landfills	1988	40,094.8			
Atrazine / alachlor in drinking water	1991	193,202.0			
Wood-preservatives hazardous waste listing	1990	11,961,062.6			

Source: Viscusi et al., Journal of Risk and Uncertainty 1997.

The Benefits and Costs of the Clean Air Act from 1990 to 2020: Summary Report

The 1990 Clean Air Act Amendments prevent:

	Year 2010 (cases)	Year 2020 (cases)
Adult Mortality - particles	160,000	230,000
Infant Mortality - particles	230	280
Mortality - ozone	4,300	7,100
Chronic Bronchitis	54,000	75,000
Acute Myocardial Infarction	130,000	200,000
Asthma Exacerbation	1,700,000	2,400,000
Emergency Room Visits	86,000	120,000
School Loss Days	3,200,000	5,400,000
Lost Work Days	13,000,000	17,000,000

http://www.epa.gov/oar/sect812/prospective2.html

Program to Reduce Air Pollution Emissions from Transport in Mexico City, with and

without a Gasoline Tax

What might it cost?

Global cost curve for greenhouse gas abatement measures beyond 'business as usual'; greenhouse gases measured in GtCO2e1

Approximate abatement required beyond 'business as usual,' 2030

¹GtCO₂e = gigaton of carbon dioxide equivalent; "business as usual" based on emissions growth driven mainly by increasing demand for energy and transport around the world and by tropical deforestation.

- ²tCO₁e = ton of carbon dioxide equivalent.
- ³Measures costing more than €40 a ton were not the focus of this study.
- ⁴Atmospheric concentration of all greenhouse gases recalculated into CO₂ equivalents; ppm = parts per million.
- ⁵Marginal cost of avoiding emissions of 1 ton of CO₂ equivalents in each abatement demand scenario.

Daniels M J et al. Am. J. Epidemiol. 2000;152:397-406

Two policy goals: cost effectiveness and efficiency

2. How to monetize the environment.

a. Travel cost models

- b. Averting expenditures
- c. Hedonic property values, wages, and the value of a statistical life
- d. Contingent valuation

Harold Hotelling, Letter to National Park Service, 1947

Let concentric zones be defined around each park so that the cost of travel to the park from all points in one of these zones is approximately constant. The comparison of the cost of coming from a zone with the number of people who do come from it, together with a count of the population of the zone, enables us to plot one point for each zone on a demand curve for the service of the park.

2. How to monetize the environment.

a. Travel cost models

- b. Averting expenditures
- c. Hedonic property values, wages, and the value of a statistical life
- d. Contingent valuation

Amoco Cadiz Oil Spill, 1978

Figure 8-3. Demand curves for beach recreation in Brittany, France just after the Amoco Cadiz oil spill 1978 and one year after.¹⁶

2. How to monetize the environment.

a. Travel cost models

- b. Averting expenditures
- c. Hedonic property values, wages, and the value of a statistical life
- d. Contingent valuation

Exxon Valdez Oil Spill, 1989

Source: Hausman, Leonard, McFadden, 1995.

Lost Consumer Surplus: ≈ \$ 7 million (\$2012)

- 1994 Jury awarded
 - \$287 M compensation
 - \$5 B punitive damages
- 2001 9th Circuit
 - \$2.5 B punitive
- 2008 US Supreme Court
 - \$507 M

- 2. How to monetize the environment.
 - a. Travel cost models

b. Averting expenditures

- c. Hedonic property values, wages, and the value of a statistical life
- d. Contingent valuation

Cost of Groundwater Contamination in Perkasie, Pennsylvania, 1988

Category of Cost	Low Estimate (\$) ^a	High Estimate (\$) ^b
1. Increased purchases of bottled water ^c	11,134.54	11,134.54
2. New purchases of bottled water	17,341.95	17,341.95
3. Home water treatment systems ^d	4,691.46	4,691.46
4. Hauling water ^e	12,512.76	34,031.48
5. Boiling water ^f	15,632.58	64,134.63
Total	61,313.29	131,334.06

^aLow estimate values lost leisure time at minimum wage (\$3.35 per hour).

Abdalla et al. Land Economics, 1992

Other examples

- Air conditioners and filters to avoid air pollution.
- Health expenditures.

Problems

- Overstated costs if expenditures buy complementary goods.
- Understated costs if expenditures incompletely offset pollution.

- 2. How to monetize the environment.
 - a. Travel cost models
 - b. Averting expenditures
 - c. Hedonic property values, wages, and the value of a statistical life
 - d. Contingent valuation

Benefits of the 1970 Clean Air Act

- Property values rose \$2609 *more* in "nonattainment" counties.
- × 19 million homes ...

The Benefits and Costs of the Clean Air Act from 1990 to 2020: Summary Report

The 1990 Clean Air Act Amendments prevent:

	Year 2010 (cases)	Year 2020 (cases)
Adult Mortality - particles	160,000	230,000
Infant Mortality - particles	230	280
Mortality - ozone	4,300	7,100
Chronic Bronchitis	54,000	75,000
Acute Myocardial Infarction	130,000	200,000
Asthma Exacerbation	1,700,000	2,400,000
Emergency Room Visits	86,000	120,000
School Loss Days	3,200,000	5,400,000
Lost Work Days	13,000,000	17,000,000

- 2. How to monetize the environment.
 - a. Travel cost models
 - b. Averting expenditures
 - c. Hedonic property values, wages, and the value of a statistical life
 - d. Contingent valuation

Risky jobs pay more, all else equal

- 2. How to monetize the environment.
 - a. Travel cost models
 - b. Averting expenditures
 - c. Hedonic property values, wages, and the value of a statistical life
 - d. Contingent valuation

Problem: Risky jobs pay *less*

Value of a Statistical Life Used by the Environmental Protection Agency (\$1990)

Study	Mean VSL estimate	Population studied	Valuation method	Average age of sample	Average income of sample	Type of risk	Mean risk
Kniesner and Leeth (1991)	\$0.6 million	US manufacturing workers	Wage-risk	37 years	\$26,226	Job-related	40/100,000
Smith and Gilbert (1984), based on Smith (1983)	\$0.7 million	US metropolitan area workers	Wage-risk	NR	NR	Job-related	NR
Dillingham (1985)	\$0.9 million	US workers	Wage-risk	36 years	\$20,848	Job-related	10/100,000
Butler (1983)	\$1.1 million	S. Carolina workers	Wage-risk	NR	NR	Job-related	5/100,000
Miller and Guria (1991)	\$1.2 million	New Zealand residents	Contingent valuation	NR	NR	Road safety	NR
Moore and Viscusi (1988)	\$2.5 million	US workers	Wage-risk	37 years	\$19,444	Job-related	5/100,000
Viscusi, Magat, and Huber (1991)	\$2.7 million	US residents	Contingent valuation	33 years	\$43,771	Auto accidents	1/100,000
Marin and Psacharopoulos (1982)	\$2.8 million	UK workers	Wage-risk	NR	\$11,287	Job-related	10/100,000
Gegax, Gerking, and Schulze (1991)	\$3.3 million	US workers	Contingent valuation	NR	NR	Job-related	70/100,000
Kneisner and Leeth (1991)	\$3.3 million	Australian manufacturing workers	Wage-risk	NR	\$18,177	Job-related	10/100,000
Gerking, de Haan, and Schulze (1988)	\$3.4 million	US workers	Contingent valuation	NR	NR	Job-related	NR
Cousineau, Lacroix, and Girard (1992)	\$3.6 million	Canadian workers	Wage-risk	NR	NR	Job-related	1/100,000
Jones-Lee (1989)	\$3.8 million	UK residents	Contingent valuation	NR	NR	Auto accidents	NR
Dillingham (1985)	\$3.9 million	US workers	Wage-risk	36 years	\$20,848	ob-related	8/100,000
Viscusi (1978, 1979)	\$4.1 million	US workers	Wage-risk	40 years	\$24,834	Job-related	10/100,000
Smith (1976)	\$4.6 million	US workers	Wage-risk	NR	NR	Job-related	10/100,000
Smith (1983)	\$4.7 million	US workers	Wage-risk	NR	NR	Job-related	NR
Olson (1981)	\$5.2 million	US workers	Wage-risk	37 years	NR	Job-related	10/100,000
Viscusi (1981)	\$6.5 million	US workers	Wage-risk	NR	\$17,640	Job-related	10/100,000
Smith (1974)	\$7.2 million	US workers	Wage-risk	NR	\$22,640	Job-related	NR
Moore and Viscusi (1988)	\$7.3 million	US workers	Wage-risk	37 years	\$19,444	Job-related	8/100,000
Kniesner and Leeth (1991)	\$7.6 million	Japanese manufacturing workers	Wage-risk	NR	\$34,989	Job-related	3/100,000
Herzog and Schlottmann (1990)	\$9.1 million	US manufacturing workers	Wage-risk	NR	NR	Job-related	NR
Leigh and Folson (1984)	\$9.7 million	US workers	Wage-risk	NR	\$27,693	Job-related	10/100,000
Leigh (1987)	\$10.4 million	US workers	Wage-risk	NR	NR	Job-related	NR
Garen (1988)	\$13.5 million	US workers	Wage-risk	NR	NR	Job-related	NR

Cost of U.S. Environmental Regulations per Life Saved						
	Year	Cost per life saved				
Regulation	Enacted	(millions of 2012 \$)				
Trihalomethane in drinking water	1979	\$0.4				
Radionuclides standards for uranium mines	1984	7.2				
Benzene NESHAP (original)	1984	7.2				
Ethylene dibromide in drinking water	1991	12.0				
Benzene NESHAP (revised)	1988	12.9				
Ethylene oxide occupational exposure limit	1984	43.0				
Arsenic / copper NESHAP	1986	48.3				
Petroleum sludge hazardous waste listing	1990	58.0				
Cover / move uranium mill tailings (inactive)	1983	66.5				
Benzene NESHAP (revised)	1990	69.1				
Cover / move uranium mill tailings (active)	1983	94.5				
Asbestos ban	1989	232.3				
Benzene NESHAP (revised)	1990	352.9				
1,2-Dichloropropane in drinking water	1991	1,370.3				
Hazardous waste land disposal ban	1988	8,793.4				
Municipal solid waste landfills	1988	40,094.8				
Atrazine / alachlor in drinking water	1991	193,202.0				
Wood-preservatives hazardous waste listing	1990	11,961,062.6				

Cast of U.C. Environmental Degulations nor Life Coved

Source: Viscusi et al., Journal of Risk and Uncertainty 1997.

- 2. How to monetize the environment.
 - a. Travel cost models
 - b. Averting expenditures
 - c. Hedonic property values, wages, and the value of a statistical life
 - d. Contingent valuation

Sources: W. Kip Viscusi, Vanderbilt University; CPSC; DOT; EPA; FAA; FDA

- 2. How to monetize the environment.
 - a. Travel cost models
 - b. Averting expenditures
 - c. Hedonic property values, wages, and the value of a statistical life
 - d. Contingent valuation

How measure "non-use" value ?

1995 NOAA Panel chaired by Arrow and Solow

- 1. Personal interviews.
- 2. Yes or no referendum format.
- 3. Respondents be given detailed information.
- 4. Income effects carefully explained.
- 5. Follow-up questions.

Survey of 1600 US residents.

MCCLATCHY-TRUNCSE

Carefully explain:

- The accident.
- Effects on shore and wildlife.
- Birds and mammals are not endangered species.
- Wildlife populations expected to recover in 3-5 years.
- Exxon's efforts to clean up.
- A <u>proposal</u> to prevent future accidents.
- How the program would be financed: a one-time federal tax per household.
- The program is expected to prevent one similar spill during the next 10 years.

Question #1

At present, we expected the program to cost your househol	d \$60.
Would you vote for the program?	□ Yes
Question #2	□ No
 If the answer to question #1 is "yes". 	

What if the program were to cost your household \$120? Would you vote for the program?

• If the answer to question #1 is "no".

What if the program were to cost your household \$30?	
Would you vote for the program?	□ Yes

□ No

Results.....

Answers to first and second questions					
Version	Yes-Yes	Yes-No	No-Yes	No-No	Total
A (\$10, \$30, \$5)	45.1%	22.4%	3.0%	29.6%	100%
B (\$30,\$60 ,\$10)	26.0%	26.0%	11.3%	36.6%	100%
C (\$60 ,\$120, \$30)	21.3%	29.1%	9.8%	39.8%	100%
D (\$120,\$250,\$60)	13.6%	20.6%	11.7%	54.1%	100%

Median answer: \$30

Problem:

What fraction of the population is willing to pay between \$30 and \$60?

- People who answered "Yes" to \$30, but "No" to \$60: **26%.**
- People who answered "No" to \$60" but "Yes" to \$30: 9.8%

Results.....

Answers to first and second questions					
Version	Yes-Yes	Yes-No	No-Yes	No-No	Total
A (\$10, \$30, \$5)	45.1%	22.4%	3.0%	29.6%	100%
B (\$30,\$60 ,\$10)	26.0%	26.0%	11.3%	36.6%	100%
C (\$60 ,\$120, \$30)	21.3%	29.1%	9.8%	39.8%	100%
D (\$120,\$250,\$60)	13.6%	20.6%	11.7%	54.1%	100%

Median answer: \$30

• Multiply by 90 million English-speaking U.S. households ...

\$2.8 Billion in \$1990

(\$4.9 Billion today)

3. Policy designs

THE TEXTBOOK MODEL

THE TEXTBOOK MODEL

THE TEXTBOOK MODEL

Sources:- Power plantsTechnologies:- Clean coal & scrubbers / Fuel efficiency vs car sizeStates /countries:- Climate change

2000 Auction Results

BIDS	BIDDER'S NAME	QUANTITY
\$250.00	Midwest Environmental Law Caucus	1
\$200.77	Sacramento Municipal Utility District	100
\$150.00	Maryland Environmental Law Society	5
\$150.00	Acid Rain Retirement Fund	13
\$138.50	American Electric Power	10,000
\$135.00	ARME 451 / ECON 409 Cornell Univ. 2000	1
\$134.11	The Detroit Edison Company	500
\$133.01	The Clean Air Conservancy	5
\$130.89	Enron North America	9,550
\$127.50	The Dayton Power and Light Company	10,000
\$126.86	PG&E Energy Trading - Power, L.P.	12,700
\$126.00	Baltimore Gas and Electric Company**	2,500
\$126.00	Clearing Price	

US Acid Rain Program

US Acid Rain Program

Graph 1 - US Acid Rain Program Covered Emissions 1995 to 2008 Million Tons Vs SO₂ Allowance Price SUS 1995 to 2009

The New York Times

Court Blocks E.P.A. Rule on Cross-State Pollution

By MATTHEW L. WALD Published: August 21, 2012

WASHINGTON — A federal appeals court on Tuesday overturned a federal rule that laid out how much air pollution states would have to clean up to avoid incurring violations in downwind states.

David J. Phillip/Associated Press The rule w as intended to address how to deal with states w hose plants pollute air in other states. The decision sends the <u>Environmental</u> <u>Protection Agency</u>, and perhaps even Congress, back to the drawing board in what has become a long and paralyzing argument over how to mesh a system of state-by-state regulation with the problem of industrial smokestacks pumping pollutants into a single atmosphere.