Thinking in 3-D While Moving Among Scales

Scientific Underpinnings of the Watershed Approach to Compensatory Wetland Mitigation

Credit where credit is due

- Tom Winter, USGS Denver
- Eric Preston, EPA-Corvallis
- Kathy Crowley, Cornell University
- F. Robert Wesley, Cornell University
- And especially . . .

Charge

- Watersheds, ecoregions, or other geographic units?
- Appropriate scale?
- Relations of functions to location?
- Landscape considerations?

EPA's definition of the watershed approach

- Coordinating framework for management
- Highest priority problems
- Hydrologically-defined geographic areas
- Ground and surface water flow

Road Map

- Basics of 3-D thinking
- Geographic units
- Scales
- Landscape position
- Other landscape considerations

BURGUNDY: PARADE OF CAP-ROCK SCARPS

Relationship of Wetland Type to Environmental Gradients

Landscape Control of Gradients

"Basic tenet of landscape ecology that the spatial position of an ecosystem within the surrounding landscape influences properties of that ecosystem"

Kratz et al. 1997

Components of Wetland Water Budgets

Figure 18. Components of the wetland water budget. (P + SWI + GWI = ET + SWO + GWO + Δ S, where P is precipitation, SWI is surface-water inflow, SWO is surface-water outflow, GWI is ground-water inflow, GWO is ground-water outflow, ET is evapotranspiration, and Δ S is change in storage.)

From Carter (1996)

"Understanding wetlands in the context of their associated ground-water flow systems is essential to assessing the cumulative effects of wetlands on water quality, ground-water flow, and stream flow in large areas."

Winter et al. 1998

Figure 10. Water balances of Mirror Lake Fen, Little Shingobee Fen, Wetland P1, and Island Lake. Diagrams show the water fluxes per unit area of wetland. Numbers are the total flux to and from the water bodies per year.

Winter's 24 Type Settings of Climate and Physiography

From Winter et al. (1998)

Groundwater Component of Streamflow in 10 Type Settings

From Winter et al. (1998)

Hydrogeologic Setting

Watershed characteristics that control the chemistry and flows of surface water and ground water to a wetland Cross sections showing principal hydrogeologic settings for wetlands

From Carter (1996)

Hydrogeologic Setting (HGS)

- Climate
- Wetland position in landscape
- Geologic characteristics of wetland watershed

RIVERINE WETLAND

Figure 2.11 Relative water balance in different interior wetlands (arrows indicate magnitude and direction of flow): S, surface-water flow; G, ground-water flow; GU, ground-water flow from upland; GR, ground-water flow to or from river; P, precipitation; ET, evapotranspiration; SM, snowmelt

EXPLANATION

Direction of ground-water ---- Average water table flow

Figure 4. Generalized ground-water flow in the Prairie Pothole Region. (Source: Modified from Winter, 1989.)

Different Landscape Positions in Which Fens Occur

Courtesy of C. Thompson

Geologic Characteristics of HGS

- Surface topography
- Land surface slope
- Thickness and permeability of soils
- Composition, stratigraphy, and hydraulic properties of underlying geologic materials

Distribution of NY Fens in Relation to Carbonate Bedrock

Distribution of NY Fens in Relation to Carbonate Surficial Deposits

Influence of stratigraphy and hydraulic properties of geologic materials on wetland formation

Modified from USGS 1996

Figure 3. Generalized geohydrologic setting of representative wetlands in Kentucky. *A*, Western Kentucky Coal Field. *B*, Fractured bedrock and terrace deposits in the Inner and Outer Bluegrass regions and the Knobs. *C*, Karst terrane in the Mississippian Plateaus.

Figure 3. Generalized geohydrology of wetlands in Virginia. A, Coastal Plain—Eastern Shore. B, Coastal Plain—west of the Chesapeake Bay. C, Region west of the Coastal Plain. (Sources: A, Based on information in Harsh and Laczniak, 1986; Richardson, 1992; and M.J. Focazio, written commun., 1993. B, Based on information in Back, 1966; Harsh and Laczniak, 1986; and Winter, 1992. C, Based on information in Heath, 1984.)

Variables Used to Characterize the HGS of 45 NY Fens

Class	Landscape variable	Measured parameters
Chemical	Mineralogy	Surficial geology, bedrock geology, soils, mineral dissolution rates
Physical	Area and gradient	Flow path length, ratio of wetland to watershed area, topographic index
Spatial	Landform Surface water inputs	Local landform, connection to surface water inputs and outputs

Charge

- Watersheds, ecoregions, or other geographic units?
- Appropriate scale?
- Relations of functions to location?
- Landscape considerations?

Answer Key

- Both plus political units
- >1<6
- Location, location, location
- It depends

USGS Hydrologic Units (1:2,000,000)

From USGS (2003)

Ecoregions/watersheds of the conterminous U.S.

From Bedford and Preston (1988)

Why (not) Watersheds?

From Winter et al. (1998)

GLOBAL BIODIVERSITY: SPECIES NUMBERS OF VASCULAR PLANTS

Why (not) Ecoregions?

Latitudinal patterns of species richness for freshwater wetland grasses

Source: A. Ellison, C. Hart, and C. Ordoyne, unpublished data.

Global Ecological Diversity

Country	Number of biomes	Number of ecoregions	Percent of global area
Former USSR	7	17	15%
Canada	7	11	7%
China	8	16	6%
United States	12	21	6%
Brazil	7	7	6%
Australia	7	11	5%

Source: Stein et al. 2000

Possible scales for mitigation decisions

Scale	Characteristics determining their spatial boundaries	-
Project	Area determined by project boundaries	-
Individual wetland	A single site defined by boundaries of the wetland itself	
Watershed or basin	The area drained by a river or stream and its tributaries	
Landscapes	Spatially repetitive cluster of interacting ecosystems Similar geomorphology Similar set of disturbance regimes May contain one or more watersheds	
Regions	Areas determined by a complex of climatic, physiographic, biological, economic, social, and cultural characteristics May contain one or more landscapes	From Bedford and Preston (1988)

Location, location, location

Elements of Landscape Profiles

WETLAND TEMPLATES

Catalog and Map of Wetland Templates

Hydrogeomorphic classes

Hydrogeologic and climatic settings

Wetland-landscape linkages

Geographical Analysis of Templates

Proportion lost and location

Proportion modified and location

Proportion remaining and location

WETLAND ECOSYSTEMS

Catalog and Map of Wetland Ecosystems

Geographical Analysis of Ecosystems

Percent Wetland Losses by State

Source: Stein et al. 2000

Drained Farmland in the Midwestern United States, 1930 Source: Prince 1997

Map 8 - Mesopotamian Marshlands: Land Cover 2000

