How can we take restoration priorities identified using a watershed-based planning tool and link them back to the regulatory process?

- 1. Understand type and extent of potential project impacts at the sitescale
- 2. Understand the condition of key ecological processes at landscape scales
- 3. Identify sites capable of matching #1 with #2 above
- 4. Target sites maximizing long-term environmental benefits

Target mitigation for maximum benefits

Target landscape, not artificial, storage and treatment

Engineered Flow Control

Example, stormwater detention pond

No benefits beyond water quality/quantity

Restoring Natural Control

Example: wetlands restoration

Many benefits beyond just water quality/quantity

Target mitigation where it's most effective

Target Key Areas for Recovery

Translate site functions to landscape processes

Site-scale

Translate landscape processes back to site functions

Assess project impacts type, area, function

Assess mitigation potential type, area, function

I-405
North
Renton
Study
Area

Establish Spatial Scales for Analysis and Mitigation

Interstate 405, North Renton

Characterize Condition of Study Area

- Water
- Sediment
- Pollutants
- Wood
- Heat
- Aquatic Integrity
- •Upland Integrity

Develop Potential Wetland Restoration Site Database

Develop Potential Riparian Restoration Site Database

Shape	Polygon
ld	ma022
Pot_rip	y
Lu	agr
Cts_rev	3.0
Add_for	Ų
Mend_for	n
Ad <u>i_</u> pl	n
Dau	0

Develop Potential Floodplain Restoration Site Database

Develop Potential Stormwater Retrofit Site Database

Shape

Soils

Acres

Gt 40 Gt 100 Fb stream

Location Watershed

Adi_park Perimeter Polygon

A/B

48.194

May Creek Site Locations

What challenges and opportunities did this present?

Challenges

- Multiple levels of environmental regulation
- Foundational elements to coordinated watershed planning don't exist
- Some permitting agencies embrace change best when *they* recommend the changes
- Overcoming internal and external prejudices (a.k.a. change is hard)
- Cooperation with some local jurisdictions

Opportunities

- People get excited about watershed work
- We provide project engineers with new options that they didn't have before
- New landscape data and perspectives provide opportunities to share data and develop new relationships
- Random acts of management doesn't work