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Social and environmental analysis of food waste
abatement via the peer-to-peer sharing economy
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Reducing food waste is widely recognized as critical for improving resource efficiency and

meeting the nutritional demand of a growing human population. Here we explore whether the

sharing economy can provide meaningful assistance to reducing food waste in a relatively

low-impact and environmentally-sound way. Analyzing 170,000 postings on a popular peer-

to-peer food-sharing app, we find that over 19 months, 90t of food waste with an equivalent

retail value of £0.7 million were collected by secondary consumers and diverted from dis-

posal. An environmental analysis focused on Greater London reveals that these exchanges

were responsible for avoiding emission of 87–156t of CO2eq. Our results indicate that most

exchanges were among users associated with lower income yet higher levels of education.

These findings, together with the high collection rates (60% on average) suggest that the

sharing economy may offer powerful means for improving resource efficiency and reducing

food waste.
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G lobal postharvest loss of edible food is estimated at 1.3
billion metric tons (t) annually1. Food loss limits society’s
ability to sustainably feed a growing population and

squanders resources on a grand scale2–7. Further, the production
of food that is intended for human consumption but not eaten
accounts for 8% of global anthropogenic greenhouse gas (GHG)
emissions, 20% of fresh water consumption, and 30% of global
agricultural land use8,9. Although food is lost across the entire
supply chain, in high-income countries losses occur dis-
proportionally at the post-retail and consumer levels1,8,10. Such
losses, referred to hereafter as food waste, range between 124 and
154 kg per capita per year and come at a high economic
cost, estimated at 10–25% of households’ annual food expendi-
tures11–15. Waste at the retail level is generated in large volumes
in part because of market, regulatory, and sociocultural standards
for food quality, aesthetics, safety, and abundance (e.g., retailers
desire to present fully stocked shelves)16,17. At the household
level, food waste is the outcome of multiple behaviors, including
inefficient household food management, confusing expiry date
labels, and over-purchasing18,19. Altogether, the massive waste of
resources and related environmental impacts have made food
waste recovery an important environmental mitigation strategy
and one of the sustainable development goals (12.3)14,20,21.

At the same time, food insecurity and malnutrition affect not
only low- and medium-income countries, but high-income ones
as well. Estimates suggest that 12.7% of US households were food
insecure in 2015, meaning that their “access to adequate food was
limited by a lack of money or other resources”22. Over 10% of UK
residents experienced food insecurity in 2014 and the recent
tripling of food bank activity has been taken by many as an
indication that food insecurity is on the rise23,24. Since 70–86% of
food waste at the retail and household levels is thought to be still
edible when discarded, redistributing edible yet unwanted food
from primary to secondary consumers has been put forward as a
win–win solution for simultaneously tackling food waste and food
insecurity11,15.

In recent years, the sharing economy—as implemented via
decentralized, peer-to-peer (P2P) networks of mobile apps and
users—has become increasingly popular. Owing to technological
developments and the ubiquity of GPS-enabled smart devices,
platforms such as Airbnb have created alternative markets by
efficiently matching agents with excess asset stocks (e.g., cars and
apartments) with potential consumers25. While some platforms
facilitate sharing activities for a fee (e.g., Airbnb), other platforms
(e.g., CouchSurfing) support free P2P exchanges of goods and
services.

Although sharing underutilized assets (with or without pay) is
a longstanding practice, the low transaction costs and barriers-to-
entry of digital platforms have made sharing cheaper and easier
than ever and therefore possible on a much larger scale. In par-
ticular, the scalability, flexibility, and potential for high-speed
exchange make digital sharing platforms well-suited for the
exchange of perishable food items21. Given that both surplus and
unmet demand for edible food at the household level coexist in
the same geographies, sharing platforms could help match
unwanted food with secondary customers and deliver environ-
mental and social benefits.

Despite growing interest in P2P food-sharing networks, their
potential to reduce food waste in a sound and sustainable manner
remains questionable. First, while sharing platforms in theory can
help redistribute unwanted food efficiently, whether there is
indeed enough interest in such exchanges from both providers
and collectors requires empirical validation. In contrast to other
secondhand products (e.g., vehicles) or even food surplus offered
by farmers or distributors, food waste has low (or even negative)
economic value. As a result, providers may not be willing to incur

the transaction costs—the time and effort involved—associated
with P2P exchanges. Similarly, supply constraints (in terms of
both volume and variety of food) might lower demand for food
waste, as disappointed collectors who cannot find a good match
for their tastes or needs abandon the platform21. Psychological
barriers might also limit demand for food waste: research shows
that people often feel disgust toward non-new items26 and have
misgivings about consuming recycled water and crops produced
using recycled water27.

Second, even if the sharing economy is successful at facilitating
P2P food exchanges, the broader environmental implications of
such exchanges are not well understood. Although the sharing
economy is generally assumed to reduce environmental burdens28,
some question this premise. Recent work reveals that sharing
economy platforms can actually stimulate new demand for durable
assets, such as cars29 and housing30 as well as services, including
tourism and road transport31,32. Similarly, food sharing might lead
to an overall increase in food consumption. In addition, added
transport related to food exchanges could potentially negate the
environmental benefits associated with food waste reduction.

Finally, food sharing might not be a viable way to address food
insecurity, as some have suggested33,34. Irrespective of any ethical
considerations regarding the appropriateness of using food waste
to feed those experiencing food insecurity35, research examining
the social dimensions of the sharing economy indicates that
higher income groups rather than lower ones often benefit more
from participation25. While food insecure populations tend to
have a lower average income and in some cases lower educational
attainment36–38, participants in free sharing platforms tend to be
highly educated; high cultural capital is potentially a prerequisite
for successful participation39. Thus, it remains unclear whether
digital platforms for food sharing are actually used by and benefit
people who are experiencing food insecurity.

Analyzing data provided by OLIO, a popular P2P food-sharing
platform (See Supplementary Note 1 for more), we examine the
types, weights, and retail value of foods offered and shared,
quantify the associated environmental impacts, and investigate
the socioeconomic characteristics of the platform’s user network.
Our results reveal that during the period examined, 90t of food
waste (60% of all items offered) with an equivalent retail value of
up to £750,000 were collected and diverted from disposal.
Exchanges were predominantly among users associated with
lower income yet higher levels of education. Finally, analysis of
exchanges in Greater London suggests that the environmental
benefits associated with avoided food waste outweigh the costs
associated with added transport.

Results
Food exchanges typology. Of the over 170,000 listings of food
items offered on OLIO between April 2017 and October 2018, we
find that 60% were successfully collected (see Fig. 1). Over this
time period, 91 ± 1t of food (5th and 95th Monte Carlo (MC)
percentiles, respectively) with an estimated retail value of
£720–750 thousand were diverted from waste and passed on to
secondary consumers across the entire OLIO network (see Sup-
plementary Table 1a, b).

The types of foods listed and collection rates by food category
are presented in Fig. 1. The most commonly listed items were
baked goods (29%), kitchen and pantry staples (17%), fresh
produce (16%), and prepared food (13%). Collection rates varied
by category and were highest for mixed listings (71%),
sandwiches (70%), prepared food (66%), and fresh produce
(65%). All food categories had collection rates of 53% or higher,
other than baby food, where only 29% of listings were collected
(see Supplementary Table 2a, b, and Supplementary Note 2).
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Network analysis investigating interactions among platform users
reveals that of the 22,000 users who participated in at least one food
exchange, 12% had both received and given at least one item, 26%
had only given items, and 62% had only collected. Specifically, in
each local network examined, a small number of mega-providers
(represented by larger green nodes in Supplementary Fig. 1)
provided most of the food changing hands. These mega-providers
were often food waste heroes: official OLIO volunteers who collect
surplus food from local businesses (e.g., supermarkets or delis) and
post them for collection via the platform. Overall, heroes were the
main sources of supply on the platform, responsible for 71% of all
collected and non-collected listings. Heroes provided most of the
supply of ready-to-eat foods (e.g., sandwiches and baked goods),
while regular users were primarily engaged in sharing pantry and
frozen food items. Furthermore, listings offered by heroes had better
collection rates overall (66%) compared to listings posted by regular
users (47%). This held true across all food categories including those
more frequently supplied by regular users (see Supplementary
Table 2b). Food waste heroes were also more likely to engage with a
larger number of users (27 on average compared to 2.5 for regular
users) and take part in reoccurring exchanges. To wit, 79% of the
time, heroes provided food to a user they had interacted with
previously (compared to 31% for regular users).

Environmental impacts. Figure 2 presents results for an envir-
onmental analysis of P2P sharing in the Greater London area.
We compare the full life-cycle GHG benefits of avoided food
waste with the emissions associated with added road transport
related to exchanges according to six transport scenarios (see
Table 1 and Supplementary Table 3a–d). Overall, 41 t of food
waste (with a 5th and 95th percentiles interval of [40, 42 t]) were
exchanged via the platform in Greater London during the study
time period. This activity involved between 226 and 451 thousand
added kilometers by car or London bus depending on travel

scenario (see Table 1 and Methods). Under all travel scenarios
considered, the reduction in GHG emissions due to avoided food
waste was larger than the added GHG emissions related to
additional road travel.

Specifically, food exchanges were associated with a net benefit
in terms of GHG emissions ranging from a minimum of 87t of
CO2eq ([72, 102 t CO2eq]) under Scenario #1 (a boundary
condition where collectors were assumed to drive back and forth
by car only to collect a single food item), to a maximum of 156 t
of CO2eq ([150, 162 tCO2eq]) in Scenario #6 (the scenario closest
to the average London transport mix). A net benefit was also
observed across all scenarios investigated in the sensitivity
analysis with the exception of the most carbon-intensive travel
scenario (#1) (see Supplementary Table 4a–c and Supplementary
Note 3). It is important to note that these benefits take into
account only cradle-to-grave emissions associated with food
waste. When considering indirect land use change or what has
been defined as the “carbon opportunity cost” of avoided food
production, environmental benefits are found to be roughly five
times larger than our current estimates (see Supplementary
Table 5)40.

Critically, we assumed that food acquired via the platform fully
displaces purchases of identical “new” foods. For example, when a

50,000 57%

53%
65%

66%

70%

60%
55%

53% 71% 55% 61%
53% 29%

45,000

40,000

35,000

30,000

N
um

be
r 

of
 li

st
in

gs

25,000

20,000

15,000

10,000

5000

Food waste heroes—Collected Regular users—Collected
Regular users—Not collectedFood waste heroes—Not collected

0

Bak
ed

 g
oo

ds

Kitc
he

n 
& p

an
try

 st
ap

les

Pro
du

ce

Pre
pa

re
d 

foo
d

San
dw

ich
es

Sna
ck

 &
 p

ac
ka

ge
d 

foo
d

Bev
er

ag
es

Te
a 

& co
ffe

e

M
ixe

d
Dair

y

Pro
te

in

Fr
oz

en
 fo

od

Bab
y f

oo
d

Fig. 1 Listings and collections by food category and user group (food waste hero vs. regular user) of the full OLIO network. Percent shown on top of
bars report overall collection rate in each category; yellow colors represent collected items, while gray colors represent uncollected items; darker shades (in
both yellow and gray) represent items listed by food waste heroes, while lighter shades represent items listed by regular users.

Table 1 Travel scenarios.

Scenario Transport mode Assumptions

#1 Car Two-way dedicated trips
#2 Car One-way dedicated trips
#3 Car One-way dedicated trips, walk <1.6 km
#4 London bus Two-way dedicated trips
#5 London bus One-way dedicated trips
#6 London bus One-way dedicated trips, walk <1.6 km
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collector receives a loaf of bread from another peer, we assumed
that she would then purchase one less loaf of bread that week.
Since this might not always be the case, we examined the minimal
displacement rate needed so that platform activity would generate
a net benefit. Back-of-the-envelope calculations reveal that if
12–50% of the food exchanged displaces purchases of identical
food items, OLIO would generate net environmental benefits,
depending on the transport scenario (scenarios #6 and #1,
respectively).

Social analysis. Figure 3 presents exchanges between providers
and collectors according to the income and education levels

representative of each user’s home address (see Methods). As is
evident from the red clusters in each panel, most exchanges
mediated by the platform were conducted between users from
areas with relatively low income levels and high education levels.

Discussion
Reducing food waste is widely recognized as critical for improv-
ing resource efficiency and meeting the nutritional demand of a
growing human population. Finding ways to improve utilization
of food waste could deliver environmental, social, and economic
benefits. Here, we have analyzed data from a popular smartphone
app and illustrate that the sharing economy could help divert
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food waste from disposal by efficiently matching unwanted food
items with secondary consumers. The high collection rate of
foods with a short shelf life (e.g., sandwiches, fresh produce, and
prepared foods) suggests that P2P sharing could offer new reuse
paths for foods that are typically deemed unsuitable for cen-
tralized food-redistribution channels in part because they are
required to abide by various standards (e.g., following cold chain
requirements during storage and transport)41,42.

While the high collection rates, topping 70% in some food
categories, indicate that there is currently ample demand for food
waste, the total amount of food waste diverted across the entire
network remains, for now, marginal. As such, the real promise
lies in scaling up P2P exchanges of food waste. Since various
barriers on both the supply and demand side could limit people’s
willingness to participate, more work is needed to ascertain not
only what the practical limits are to food sharing but also how
such expansion could occur.

Regarding environmental impacts, we show that the benefits
of avoided food waste outweigh the burdens associated with
added road transport. Consequently, food sharing offers a net
GHG benefit that is equivalent, on average, to 0.6% of
London users’ per-capita food-related emissions (assuming a
2.7 t CO2eq per cap annually associated with food consumption
in London)43. We confirm the robustness of our key finding
that the GHG benefits of food sharing outweigh the costs, by
examining alternative emissions coefficients reported in the
literature. In all but the worst-case transport scenario (#1), in
which collectors are assumed to drive back and forth by car to
make a collection, the benefits of food sharing outweigh the
added climate burdens. Since there are only 0.3 cars per adult in
the greater London area44, scenario #1 is not very realistic in
this geography. A transport scenario based on the average
London transport mix (21% walking, 34% car, and 45% public
transport45) suggests that travel GHG burdens are likely closer
to scenario #6 (20 tCO2eq with an interval of [16, 24 t CO2eq]).
Moreover, if OLIO collection is done as part of routine trips
(for commuting or shopping) or if more than 20% of collections
are conducted on foot, the added emissions would be even
lower. Nonetheless, scenario #1 represents an important
boundary condition that could be highly represented in areas
with limited public transport options or suburban and rural
communities where travel distances tend to be longer. More
work is needed to quantify the environmental implications of
food sharing in non-urban areas.

Our environmental analysis has several limitations. First, the
data does not contain information at the sub-listing level. Thus,
when listings contain more than one food item (e.g., ten loaves of
bread) we could not definitively ascertain whether all ten loaves
were collected or only nine. Anecdotal information provided by
platform managers suggested that roughly 90% of all multi-item
listings are collected in full and thus we assumed that to be the
case. Second, since no historical data on user location was
available (due to privacy concerns) we used notification location
as a proxy for collectors’ points of origin. Hence, there is
uncertainty involved in estimating travel routes and distances.
Third, in our analysis we employ a general GHG emissions factor
assuming that the types and quantities of foods shared via the
platform are similar to the average UK food waste composition.
However, since the environmental benefits would be greatest if
the platform facilitated exchanges of carbon-intensive foods (e.g.,
meat-based products) a more granular examination focusing on
the factors which facilitate successful exchanges of such foods
could help maximize the environmental benefits delivered via
food sharing. Finally, the results of our environmental analysis are
contingent on the fact that food obtained via OLIO fully displaces
purchases (and consequently production) of “new” food items.

Since, however, non-new products seldom displace purchases of
new products on a 1:1 basis, this might not be the case 46,47.
Therefore, while food sharing might have social or economic
benefits, it is important to consider the minimal displacement rate
needed to ensure that the environmental benefits of food sharing
remain higher than the environmental burdens incurred by this
activity.

While low substitution rates might hinder the GHG benefits
derived by OLIO, adding the carbon opportunity cost (COC) of
indirect land use changes could increase the calculated GHG
benefits considerably. As more data on the COC40 in the context
of the UK become available, the uncertainties associated with the
overall GHG emissions of food waste and of food sharing will be
reduced.

Another aspect to consider is that if food sharing were to
reduce consumers’ food purchases, the resulting economic sav-
ings might lead to rebound effects48. With an estimated retail
value of £0.7 million, exchanges of food waste via OLIO could
lead to meaningful respending effects, and increase, rather than
decrease, overall GHG emissions 49. Rebound effects are parti-
cularly relevant for people in lower income brackets, such as those
experiencing food insecurity, who tend to spend any additional
income on fulfilling basic family needs. Since sharing economy
platforms are free of the social stigma associated with seeking
help from food banks and similar charities, they have been touted
as a potentially promising avenue for reducing food waste while
addressing the challenge of hunger and food insecurity simulta-
neously50. Yet as our results on the demographic make-up of
users highlight, food-sharing recipients tend be of lower income
but higher education brackets. The high education levels suggests
that collectors may have additional resources (e.g., access to
technology and social networks) that those most in need of food
assistance do not. High education levels have also been docu-
mented in participants of other free sharing initiatives (e.g.,
Timebanks)39.

In addition, we find that food typically moves among users
who have similar income and education levels. While this might
stem from the platform’s location-based character, these results
are well aligned with previous work showing that in situations
involving free exchanges, people are more likely to engage with
strangers of similar status and level of cultural capital39. Overall,
this suggests that food sharing may not be as effective as has been
claimed for addressing food insecurity. However, it should be
noted that we used geographic census data to infer users’ income
and education levels. Since the average income and education
levels in a certain area are not always representative of the indi-
vidual resident, our findings might be misleading on account of
ecological fallacy51.

Ultimately, the societal desirability of food sharing will be
determined by the magnitude of its social, environmental, and
economic implications and by its potential to scale up. A better
understanding of “what sells” in a free sharing economy, and the
potential impacts of factors such as geographic location, collec-
tion restrictions (e.g., time of day), information on the food items’
source (household or retail), and descriptive text and image
would likely contribute to the successful expansion of food-
sharing practices.

Despite growing interest in the sharing economy, and food
sharing in particular50,52–55, data-driven analyses of food sharing
remain scarce. Here we empirically investigate the full life-cycle
environmental impacts of a popular P2P food-sharing platform
and examine exchanges from a socio-economic perspective. In
addition to measuring food reuse through exchange, we also note
implications for both the management of sharing-economy
platforms like OLIO as well as the broader universe of sharing
platforms.
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Methods
Dataset construction and analysis. We use a mixed methods approach to
empirically investigate food sharing via the popular food-sharing platform OLIO.
Our dataset comprised raw data covering all platform activity between April 2017
and October 2018 (inclusive). Although OLIO operates globally, most of the
activity is centered in the UK (73%) and Channel Islands (22%). The data provided
by OLIO included activity over 19 months for over 30,000 active platform users
and was sufficiently rich to allow us to study the types, quantities, and economic
value of foods offered and shared, quantify the environmental impacts of food
sharing, and examine the flow of food between users from a sociodemographic
perspective. A detailed explanation of data processing and preparation for analysis
is presented in the SI.

To determine the types of foods offered and shared via the platform we first
classified all listings into food categories using a supervised deep learning long
short-term memory (LSTM) network. An LSTM is a recurrent neural network that
is trained to identify long term dependencies of sequence data. LSTM uses word
embedding to map word sequences into numeric vectors, which retain
relationships between the words as well as semantic similarities (i.e., similar words
or phrases have similar vectors). To create the LSTM network based classifier for
OLIO listings, we first manually sorted and tagged over 53,000 OLIO listings into
nonfood categories (including supplements such as vitamins and medication, and
pet-food) and 13 food categories (see Supplementary Table 6), defined based on
properties, such as expected shelf life (e.g., fresh produce and frozen food), storage
needs (e.g., dry store), and nutritional value (e.g., snacks, baked goods). We then
used this corpus to train, validate, and test the LSTM network (referred to here
after as the classifier for clarity) achieving an accuracy level of approximately 0.9,
which is typically considered sufficiently high in the field of natural language
processing. Finally, all listings (both collected and not collected) were fed into the
classifier, which assigned each to one of the predetermined categories. Given our
interest in edible food, only the 170,000 unique listings containing food (i.e.,
categories 1–13 in Supplementary Table 6) and their related users were included in
our assessments.

To investigate the viability of food sharing as a strategy for diverting post-retail
food waste from disposal and placing it in the hands of interested consumers
instead, we examined collection rates in each food category. All listings that had at
least one collection (including those offering multiple items) were assumed to be
collected in full. To assess the origin of supply and examine the prominence of
household food waste verses retail food waste, listings and collection rates were also
examined according to the type of user offering them, and whether they were food
waste heroes or regular users.

Since most of the food listings do not contain exact weight descriptions, we
performed a series of MC simulations (Supplementary Table 7a, b) drawing from
an empirical sample of 3300 randomly selected listing for which weights and
monetary values were manually assigned based on images and text descriptions.

Environmental assessment. To examine the full life-cycle environmental impacts
of reducing food waste via P2P sharing, we compared the environmental benefits
associated with avoided food waste with the environmental burdens associated with
added transport required for sharing (i.e. collectors' travel to and from the pickup
sites). While the environmental impacts for both food waste and transport are
location specific, in our analysis we focused only on successful exchanges (i.e.,
collected listings) in the greater London area since this network was by far the most
developed, complex, and geographically spaced OLIO network.

Environmental benefits (in metric tonnes of CO2eq) were calculated based on
the overall mass of food exchanged in the greater London area and a general
UK GHG emissions factor for avoided food waste. In line with previous work on
food waste recovery11,56, we assumed that all foods collected via OLIO fully
displaced routine purchases of food in London. Put differently, we presumed that
any item collected via OLIO was a perfect substitute for an identical, new food item
that would have otherwise been purchased by consumers. See discussion section for
more on the implications of this assumption.

Weights and overall mass of food exchanged. Food waste heroes were more
likely to offer multiple items in each listing (e.g., 20 loaves of bread) compared to
regular users. Therefore, to preserve the original pattern of their relative con-
tribution we estimated weight-per-listing separately for heroes and regular users
(see Supplementary Table 2a, b). Specifically, we split the empirical sample data
into groups crossing the 13 food categories (g) and the two user types (u). Since
retailers did not typically provide baby formula or dry tea and coffee, we assumed
that listings in these categories always originated from users’ homes, and therefore
considered all as if they were offered by regular users. We then ran a series of MC
simulations, randomly selecting a group of weights (w) from the empirical sample,
according to the number of listings exchanged (n) via the OLIO platform in each
category (g) and user type (u). In groups where the empirical sample contained
fewer than 50 observations, weights (w) were randomly drawn from the fitted (i.e.,
predicted) log-normal distribution of weights instead of the actual empirical
sample (see Supplementary Tables 2a, b and 7a). Finally, we summed the mass of
food exchanged in all groups and repeated the entire process 104 times to obtain a
range of overall mass of food waste avoided (Mtot).

Total avoided mass (Mtot) was calculated using Eq. (1)

Mtot ¼
X2

u¼1

X13

g¼i

Xnðg;uÞ

j¼1

w; ð1Þ

where Mtot, represents the total mass of food exchanged via OLIO in greater
London, u represents the user group, g represents the category group, n(g, u)
represents the number of listings exchanged per category and user group, and w
represents the weight-per listing drawn from the empirical sample or fitted
distributions.

GHG emissions associated with avoided food waste. A literature review
revealed a wide range of estimates for food waste related emissions57,58. Beyond
differences in location, estimates also included several definitions for what con-
stitutes food waste as well as different system boundaries. For example, while some
estimates considered only direct impacts from diverting food from disposal59,
others included embodied emissions, such as those related to food production,
processing, transport, and cooling57,58, and others considered the COC of aban-
doning farmland and allowing it to regrow40.

Moreover, given that some food items, meat-based products in particular, have
substantially higher emission than others, the composition of food waste can also
affect emission estimates. Since many of the items offered via the platform contain
various food groups (e.g., sandwiches, prepared foods, frozen food, and mixed) it
was hard to ascertain the exact composition of items exchanged and build a robust
bottom-up emissions factor. For this reason, we applied emissions factors for the
average food composition of UK food waste based on values reported by
WRAP56,60. This UK-specific range of emissions factors (4.0–4.6 t CO2eq per ton
of food waste) reflects the full life-cycle impacts, including both embodied impacts
(i.e., all impacts incurred from farm to fork) as well as direct impacts (i.e., impacts
related to end-of-life management of food waste in the UK) of an average kg of
food waste in the UK. We adopted a normal distribution with an average value of
4.3 and a coefficient of variation of 10% (ewaste). Although emission factors tend to
be location-specific, as a sensitivity analysis we repeated the analysis using a
significantly lower emissions factor (2.1 t CO2eq per ton of food waste avoided)
calculated for the EU as a whole61. Results are presented in Supplementary
Table 4a, b.

To assess the avoided GHG associated with OLIO exchanges in Greater
London, we multiplied the mass of food exchanged in each user-food category
group (as derived from Eq. (1)) by a GHG coefficient, randomly selected from the
avoided food waste GHG coefficient distribution (ewaste). Repeating this process 104

times for each user-category group and summing all results, we estimated the range
of environmental benefits associated with exchanges.

GHG emissions associated with added travel. Environmental burdens were
estimated as a function of the total distance collectors traveled to pick up a food
item and the GHG emissions associated with the transport mode. To this end, we
constructed six transport scenarios, crossing different travel modes with behavioral
assumptions informing the share of trips dedicated solely to food collections (see
Table 1). According to recent estimates, only 33% of passenger trips within the
London area are done by car while 45% are done by public transport and 21% on
foot45. Since no information on travel-related activity and modes was available, we
conservatively chose to model transport based on the most environmentally
intensive transport modes: passenger vehicles and the London bus.

For each collection, road travel distance and travel time (under normal driving
conditions) between the collector’s point of origin (assumed to be their default
notification location) and the exact collection location (as defined in each listing)
were calculated using the STATA (version 14.2) Georoute command62. The
Georoute command retrieves the road distance, and the time it would take under
normal driving conditions to get from point A to point B based on the commercial
API HERE (ww.here.com). Much like Google Maps, Waze, or other applications,
HERE combines detailed maps with traffic statistics to predict travel routes and
times. Since it takes less than 10 min on average to reach a food store in London63,
exchanges requiring travel longer than 30 min (one-way; N= 7567) were excluded
leaving 62,570 exchanges for analysis.

To model different travel options, we constructed six travel scenarios crossing
transport modes with behavioral assumptions inferring the share of trips dedicated
solely to collecting OLIO food (see Table 1). Specifically, scenarios #1–3 assume
that all road travel was done by passenger vehicle, while scenarios #4–6 assume all
road travel was done via London Bus. Our most behaviorally conservative scenarios
(#1, and #4) assume that collectors always made a special, trip back, and forth (i.e.,
two way) to collect the food item from the provider. Since people often go food
shopping “on the way” to other activities, in the next pair of scenarios (#2, and #5)
we assumed that 50% of the time, foods were collected on route to another
destination (e.g., as part of a daily commute). In our final scenario pair (#3 and #6)
we assumed that any travel shorter than 1.6 km (i.e., 1 mile) was done on foot (N=
18,072) and thus had no environmental burden in terms of GHG emissions.

For each scenario, we then calculated travel-related burdens by multiplying the
overall distance collectors drove, by the full life-cycle GHG emissions associated
with the relevant transport mode. Direct emissions coefficients for cars (147 g
CO2eq per passenger-km) and the local London bus (72 g CO2eq per passenger-km)
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were taken from a recent UK-specific estimate64. Since the embodied emissions of
cars (i.e., the emissions associated with their production) are ≈20% of direct
emissions65, we estimated embodied emissions based on the direct emissions and
added them to derive the full life-cycle coefficients used to calculate the
environmental burdens of travel (ecar= 184 gCO2eq per passenger-km, and ebus=
90 g CO2eq per passenger-km). As a sensitivity analysis, environmental burdens
were also estimated based on higher emission coefficients found in the literature
(ecar= 240, ebus= 12064,66). Total GHG emissions associated with each scenario
travel were estimated using the following equation (Eq. (2))

GHGscenario ¼ d ´ e; ð2Þ
where d is the overall distance traveled and e is the GHG coefficient factor per
distance (i.e., ecar or ebus).

We used MC simulations (104 times) to derive a distribution for GHG
emissions of road travel by varying the relevant GHG coefficient (assuming a
normal distribution with a coefficient of variation of 10%). Finally, net
environmental benefits were calculated by subtracting the burdens of additional
travel from the benefits associated with diverted food waste.

To crudely estimate the minimal displacement rate required to ensure that
exchanges of food waste deliver environmental benefits, we divided the GHG
burdens associated with added transport by the GHG benefits associated with
avoided food production in each of our six scenarios, respectively.

Carbon opportunity cost. To estimate the COC associated with food sharing, we
first calculated the COC associated with 1 kg of food waste in the UK. To this end,
we determined the relative contribution each food type made to the overall com-
position of food waste in the UK (as reported by WRAP56,60). In addition, we
converted COC factors provided in Searchinger et al.40 from production weights
(e.g., wheat) to waste weights (e.g., bread, see Supplementary Table 5b). We then
multiplied the relative contribution of each food type by its respective COC factor
and summed results up to derive the COC per kg of UK food waste. Finally, we
multiplied the overall mass of food diverted from disposal via sharing by the UK
food waste COC. For more details see Supplementary Table 5 and comments
therein.

Retail value. Retail value was estimated following a similar approach to the one
employed to estimate weights. Specifically, using the same empirical sample
described previously, we manually assigned each listing with an estimated retail
value, based on descriptions, images, and a web search for the retail cost of identical
or similar items in the UK. We then used a series of MC simulations to estimate
overall retail value following the same procedure we used to estimate food mass.

Social analysis. Finally, we investigate the social dimensions of OLIO by exam-
ining how food moves between UK users living in neighborhoods of varying
affluence and education levels (Supplementary Table 8a, b). Since no information
on users’ home addresses was available, we used notification locations as defined by
each user in their profile as a proxy for providers’ and collectors’ home addresses.

Specifically, we mapped the location of each user in the greater London area
(using the STATA package GEOINPOLY67, and performed a spatial join with UK
official census data to assign each user to a specific Lower Layer Super Output Area
(LSOA, by UK 2011 definitions68), and the corresponding income and education
deciles reported under the Index of multiple deprivation69. LSOA is the smallest
geographic area defined by the UK office of national statistics, and includes no
more than 1000 households by definition. We then created a matrix for the number
of exchanges by provider and collector deciles, plotting results into heat maps
presented in Fig. 3. Only cases where both users’ locations could be matched to
LSOA boundaries were included in the analysis.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Aggregated data used in our analysis can be found in the Supplementary Information
excel spreadsheet.

Code availability
The deep learning algorithms using NLP to determine food categories were coded in
Matlab (version R2018b). Monte Carlo calculations for food waste amounts and GHG
were also conducted in Matlab (version R2018b). Transportation scenarios were
calculated using the STATA (version 14.2) Georoute command. The social analysis
linking UK census data with food-sharing transactions was performed using the Stata
package GEOINPOLY. All relevant code is available from TM and AS upon request.
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