EPA Support for Watershed Planning and Prioritizing: Data, Tools, and Services

Doug Norton and Dwight Atkinson
Watershed Branch AWPD/OWOW, EPA Office of Water

State Workshop on 303(d) and TMDLs

May 2014

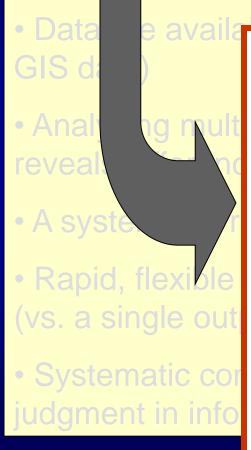
Part 1: Recovery Potential Screening and Watershed Index Online

Part 2: WATERSCAPE

What is Recovery Potential Screening?

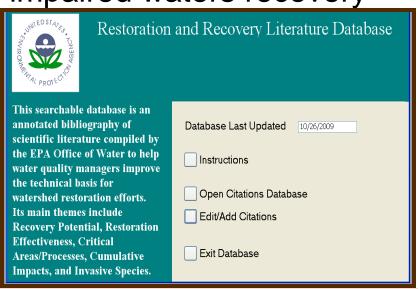
A method to help states and restoration planners compare restorability across watersheds

- Science-based, indicator-driven (GIS and field monitoring data)
- Scores and compares watersheds relative to their:


ecological condition, exposure to stressors, and social context affecting restoration efforts

How Recovery Potential Screening Is Used to Prioritize

- <u>impaired waters prioritization</u>: which watersheds (in a river basin or statewide) are more restorable and might recover quickly?
- <u>revealing level of difficulty</u>: how do waters differ in recovery potential, and what factors are responsible? What am I up against?
- TMDL implementation: how do waters with TMDLs appear to differ in restorability? which TMDLs are good prospects?
- <u>nonpoint source program strategies</u>: how can considering restorability factors help watershed plans or statewide strategies?
- <u>scenario-specific projects</u>: e.g., how does restorability differ across all nutrient impaired waters? across all urban waters? for fish restoration? among healthy but threatened watersheds?


Where it started (2004)...

 Numerous ecological and social factors are associated with the relative ability to recover from impairment

Recovery Literature Review

- Over 1700 published papers
- Identification of factors influencing or associated with impaired waters recovery
- In literature
- In practice

www.epa.gov/recoverypotential/

File Edit View Favorites Tools Help

US Recovery Potential Screening | Re...

United States Environmental Protection Agency

LEARN THE ISSUES | SCIENCE & TECHNOLOGY | LAWS & REGULATIONS

ABOUT EPA

Water: Recovery Potential

Water Home

Drinking Water

Education & Training

Grants & Funding

Laws & Regulations

Policy & Guidance

Laws & Executive Orders

Regulatory Information

Regulatory Info by **Business Sector**

Tribal

Our Waters

Pollution Prevention & Control

Resources & Performance

Science & Technology

Water Infrastructure

What You Can Do

You are here: Water » Laws & Regulations » Laws & Executive Orders » Clear (303d) » Recovery Potential Screening

Recovery Potential Screening

Tools for Comparing Impaired Waters Restorability

Monitoring programs under the Clean Water Act have identified tens of thousands of US water bodies that do not meet Water Quality Standards and are in need of restoration. This website provides technical assistance for restoration programs to help them consider where to invest their efforts for greater likelihood of success, based on the traits of their own geographic area's environment and communities. There are three main website components. Step-by-step instructions in recovery potential screening provide watershed managers with a methodology for comparing restorability differences among their waters. The steps in the methodology link to several online tools and resources that are used in recovery potential screening. A library of recovery potential indicators offers technical information on specific recovery-related factors (ecological, stressor, and social), how they influence restorability, and how to measure them. More ...

Quick Links

Home

Overview

Screening methodology

Step-by-step screening example Example projects

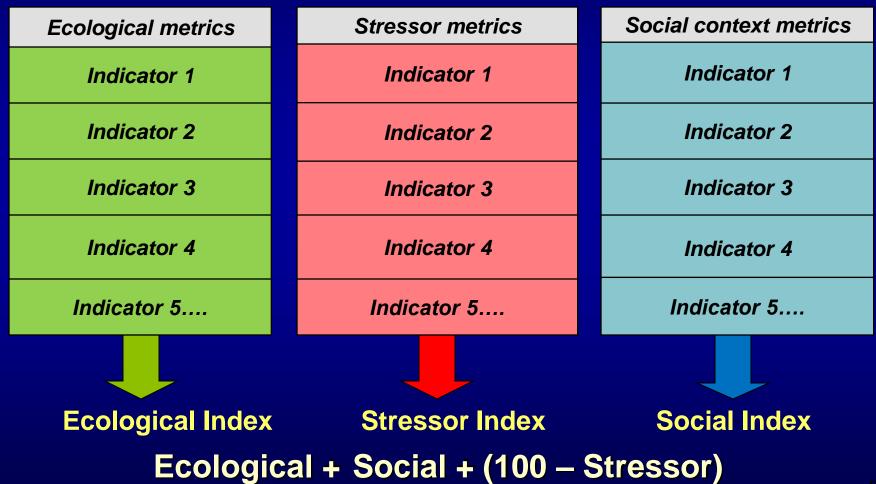
Recovery tools & resources Literature database Indicators & reference sheets Scoring techniques Displaying screening results

HI

PR

VI

Recovery Potential Screening Activity in States

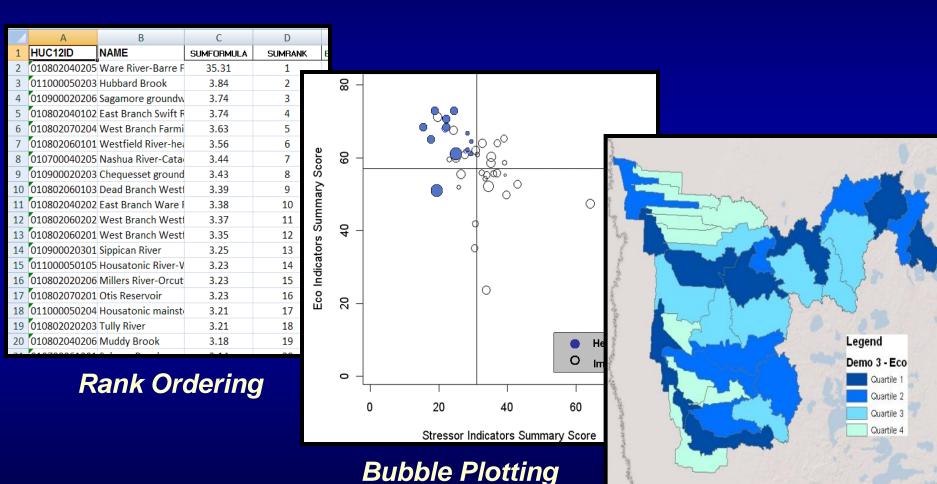

Completed or ongoing RPS projects

Expressed interest in RPS

Activity unknown

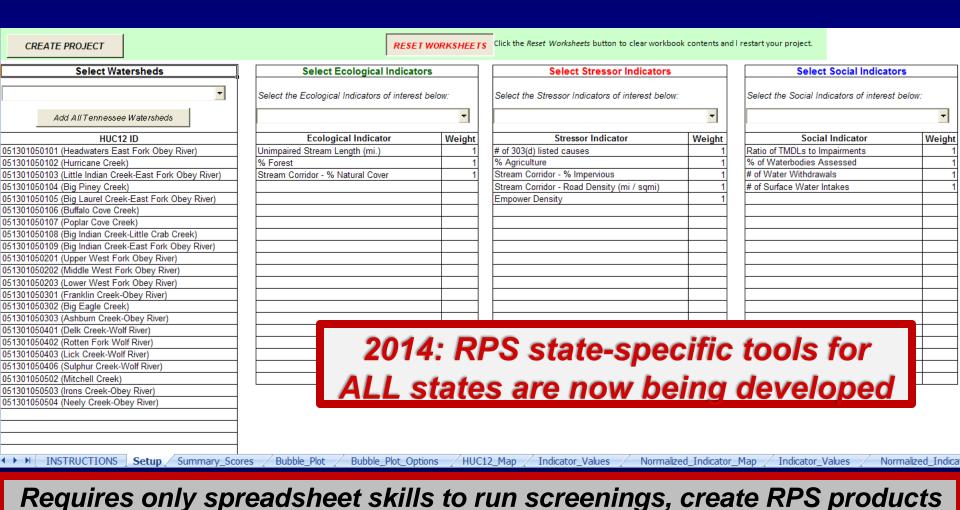
How does it work?

Recovery Potential Screening - Basic Concept



Recovery Potential Screening: Example Indicator Selections

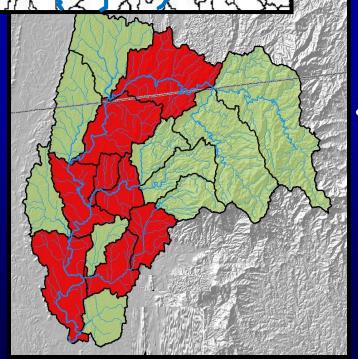
RPS Indicator selection for screening based on prioritizing pathogen TMDLs								
ECOLOGICAL	STRESSOR	SOCIAL						
Percent natural cover	Percent pasture in watershed	Jurisdictional complexity						
Percent forest in corridor	Percent impervious in watershed	TMDL count						
Stream density	Percent septic in stream corridor	Percent protected lands						
Stream order	Percent sewered	Active volunteers						
Change in natural cover	Impairments count							


RPS Indicator selection for screening based on development risks to watersheds								
ECOLOGICAL	STRESSOR	SOCIAL						
Percent_NaturalCover	Percent_Sewered	Percent_Stressors_Known						
Percent_Forest_In_Corridor	Percent_Impervious	Percent_Length_Assessed						
Percent_Wetlands	Percent_Impervious_>5_In Corridor	Percent_Watershed_Protected_Lands						
Topo_Complexity	Percent_Length_Impaired	Low_Jurisdictional_Complexity						
NFHAP_HCI_Condition	Road_Density	Low_Landuse_Complexity						
Combined_Natural_Habitat_Index	Percent_Septic_In_Corridor	Active_Volunteers_Count						
Percent_Change_Natural_Cover	Population_In_Corridor_With_Septic	Percent_Source_Water_Protection_Area						
Percent_Natl_Eco_Framework	Population	Other_Priority_Recognition						
	Stressor_Count							

Three Types of Recovery Potential Screening Products (from the indicator scoring)

RPS Scoring Tool

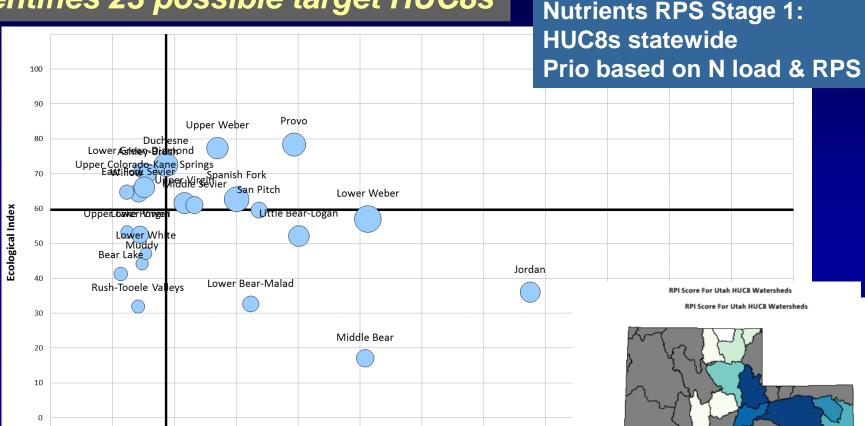
Contains all the statewide data on indicators, watersheds Creates rank-ordering, maps, and bubble plots in minutes


Applying RPS in State Programs

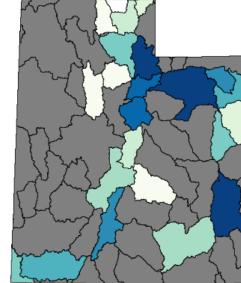
Nutrients RPS Two-Stage Approach

State defines Nutrient Scenarios
 (e.g., rural/agr watersheds, urban watersheds)

• RPS Targeting stage: priority HUC8s in scenario (moderate-high loads, good RP prospects)

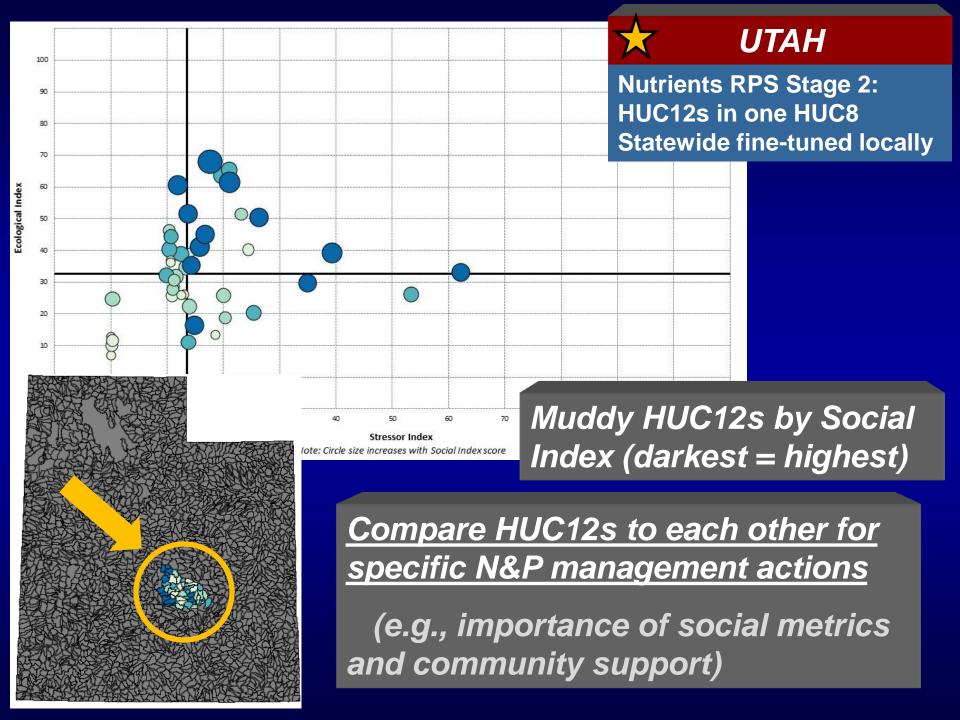

 RPS Implementing stage: HUC12s in HUC8 (where to take action within priority 8's)

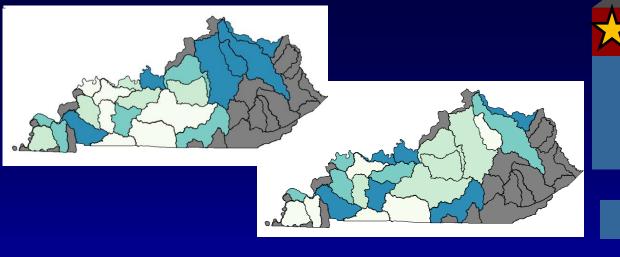
Kentucky



UT: a N-based scenario selection identifies 23 possible target HUC8s

- Erosion Resistance1
- Percent NaturalCoverCorridor
- Percent NaturalCover
- #UPDES
- percentUrban
- #Diversions
- percentCropland
- ReNANIAB
- # T&E spp

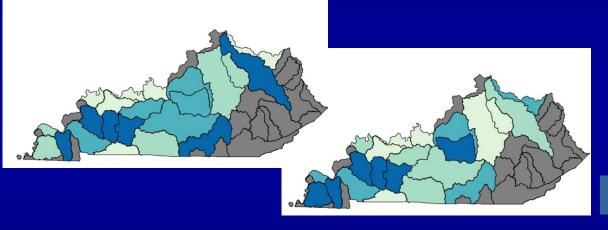

- Major Fish Public Access (Km)
 - 1C KM
- # Jurisdictions.1Inv
- TMDLRatio
- EducationPercent

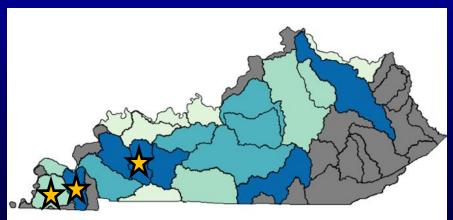


70

ex score

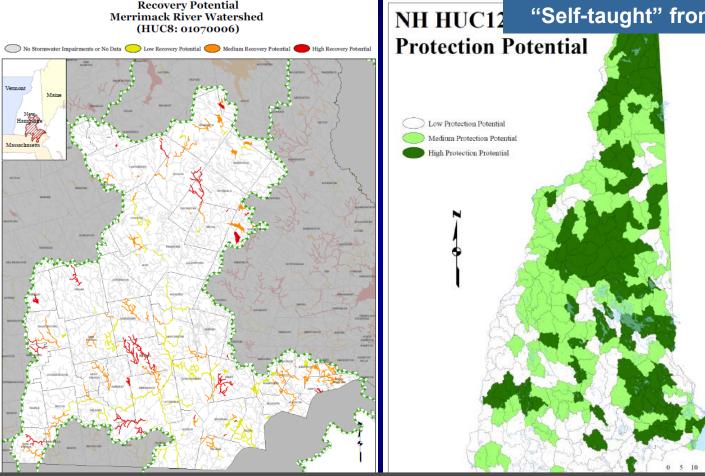
UTAH





Stage 1
Rural Nutrients Scenario
(> mean load, hi agr %)

SPARROW N and P


High RPI and riparian veg

High N or P loads X good RPI or veg (★)

XNEW HAMPSHIRE

Restoration and protection Catchment and HUC12 scale "Self-taught" from website

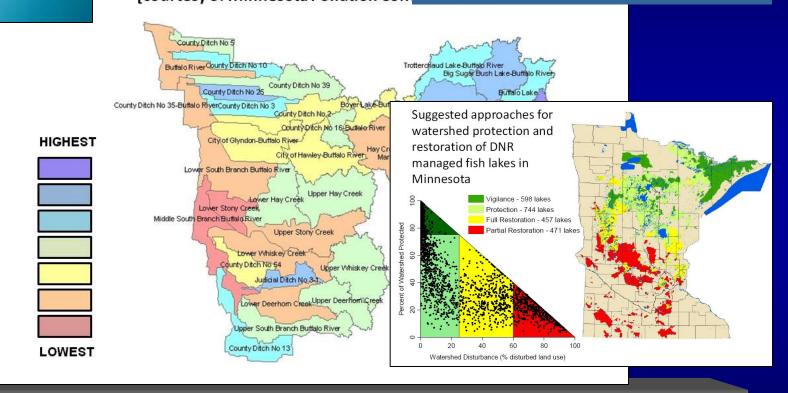
- RPS at catchment scale for restoration priority setting
- RPS at HUC12 scale for healthy watersheds protection

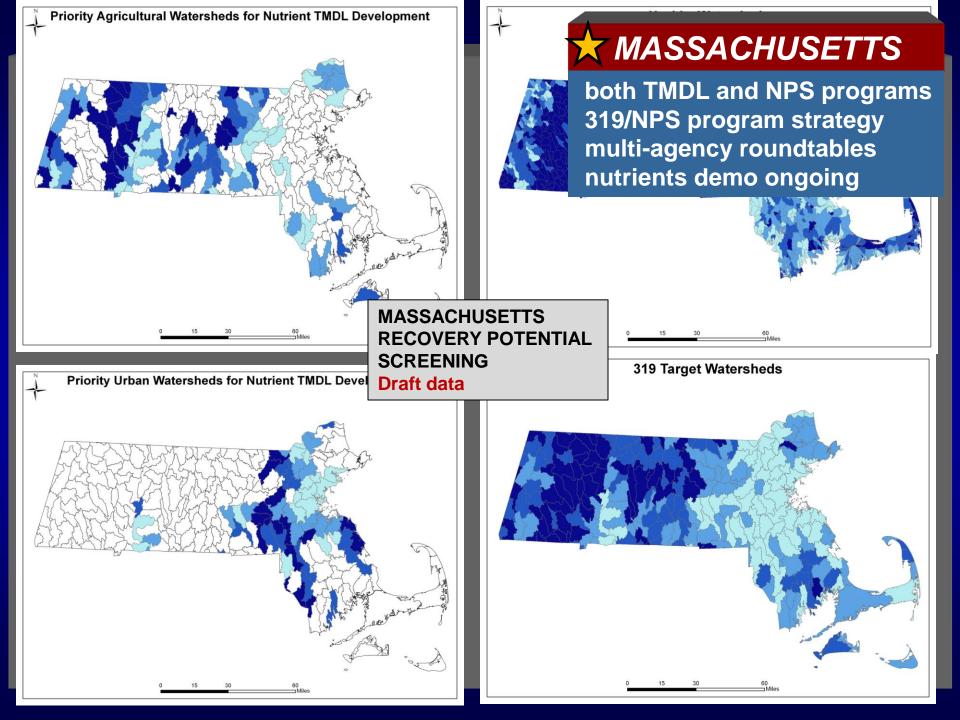
Using all four RPS Indices in three Scenarios

Healthy Watersheds Comparison by Rank Ordering

1st (top) 2nd 3rd 4th quartile quartile quartile

			AGRICULTURE			MINING				POPULATION GROWTH				MEAN	
HUC ID	HUC12 NAME	TYPE	ECO	STR	soc	RPI	ECO	STR	soc	RPI	ECO	STR	SOC	RPI	RPIRANK
51100011301	Echo River-Green River	REFW	547	117	2	10	290	270	3	4	203	14	3	4	3
51001010509	Scott Creek-Licking River	REFW	17	194	5	1	9	833	4	8	7	105	4	3	5
51100010307	White Oak Creek-Green River	REFW	80	350	28	13	7	794	20	18	13	217	16	5	17
51301050303	Ashburn Creek-Obey River	REFW	477	80	57	61	1	1	34	1	1	39	41	1	20
50600021605	Carroll Run-Scioto River	REFW	837	233	53	192	29	5	31	2	17	491	31	10	22
51100011106	Conoloway Creek-Nolin River	REFW	153	79	85	34	26	13	69	5	38	13	74	6	32
51100010205	Wilson Creek-Robinson Creek	REFW	129	375	58	36	22	784	43	48	47	301	42	14	40
51100020207	Walnut Creek-Barren River	REFW	329	285	64	68	293	32	60	11	334	112	61	50	42
51302050703	Long Creek-Cumberland River	REFW	208	61	121	47	14	124	102	6	34	23	99	8	45
51301040701	Wolf Creek-Big South Fork Cumberland River	REFW	345	12	96	60	69	412	82	28	71	46	73	11	45
51002040503	Ross Creek-Kentucky River	REFW	87	67	96	26	157	377	88	41	123	41	91	19	52
51002040207	Upper Middle Fork Red River	REFW	76	67	68	12	163	514	55	39	179	454	57	55	54
51100020102	Trace Creek-Line Creek	REFW	308	513	71	98	318	165	54	20	368	315	56	79	57
51100010306	Lower Casey Creek-Green River	REFW	184	333	82	51	46	773	67	83	94	148	66	20	62
51002030103	Martins Creek-Goose Creek	REFW	503	149	46	69	335	668	27	76	240	682	29	81	68
51001010404	Leatherwood Creek-Beaver Creek	REFW	24	181	93	19	13	846	74	104	14	306	77	15	71
51301040505	Williams Creek-Big South Fork Cumberland River	REFW	5	14	200	28	36	379	153	47	35	8	162	16	88
51100020505	Lower Trammel Creek	PHW	351	390	116	124	449	173	100	62	423	168	97	100	93
60400051005	Bear Creek-Kentucky Lake	REFW	325	283	211	170	24	21	219	13	63	116	216	56	93
60102060403	Indian Creek	REFW	482	69	216	181	171	59	172	42	21	163	176	30	96
51100020905	Clifty Creek-Barren River	PHW	311	309	132	111	364	215	156	96	360	87	157	107	112
51002040501	Billey Fork	REFW	166	83	160	62	327	337	140	110	256	88	143	71	114


A Comparative Analysis of Recovery Potential for Impaired Waters in the Buffalo River Watershed


Pete Knutson, MPCA Peter Mead, NRCS Recovery Potential Integrated S
or Buffalo River, Minnesota sub[courtesy of Minnesota Pollution Cont

Social indicators focus Partnering w/USDA DNR fisheries usage Seminars with CAN, ND

- Evaluate restorability to inform dialogue on priority setting
- USDA, EPA, MPCA, MDNR involvement

EPA/HQ's Recovery Potential Screening and EPA Region 4's Watershed Index: Teaming Up to Create

Watershed Index Online

- TOOLS: initially the RPS tool, others TBD
- NATIONAL DATA: HUC12 attributes library from WSI and others (300+ indicators)
- PRE-COMPILED SCREENINGS: examples showing the use of RPS on priority stressors
- PROGRAMMATIC LINKS: TMDL Vision Prio Support, HWI, 319 watershed prio, Measures

What to expect from Recovery Potential Screening

- Flexibility
 - Adaptable to most prioritizing situations
 - User-controlled topics, indicators, weights
- Speed
 - Run numerous iterations in a few hours
- Ease of Use
 - Desktop excel tool
- Transparency, repeatability
- Multi-format products
 - Numeric indices
 - Maps, plots provide 'discussion support'

Bottom line re. prioritizing

you **DO** have: the need the data the tools and the help....