MODELINGSHOWCASE

2020 NATIONAL CWA 303(d) TRAINING WORKSHOP

hursday May 28, 2020

Session

RBM10

Temperature Model of the Columbia and Snake Rivers

National 303d Meeting Model Showcase

Ben Cope, EPA Region 10 Seattle, Washington May 28, 2020

Fun Fact: Grand Coulee Dam contains enough concrete to build a highway from Seattle to Miami.

Daily Maximum Temperature John Day Dam 2011-2016 (WA Criterion: 20°C 1-DMax)

RBM10 Temperature Model

- 1-Dimensional
 - Cross-sectional average temperature simulated
- Daily time step (daily average temperature)
- Simulation years 47 year simulation (1970-2016)

One-Dimensional Energy Budget Model

Model Is Checked Against All Available Data

Source Assessment Scenarios

Source Assessment Scenarios

- Point source impact
 - with and without
- Tributary impact
 - altering trib temperature
- Dams
 - with and without
- Climate change
 - trend in long term simulation

47 Year Simulation

RBM10 Free-Flowing; Bonneville Dam location

Trend is 0.4°C increase per decade

The End

<u>Acknowledgements</u> Rene Camacho, Tetra Tech Erin Lincoln, Tetra Tech Laurie Mann, TMDL Project Lead, EPA

<u>Contact</u>

Ben Cope EPA Region 10

cope.ben@epa.gov

Modeling Projects in CT

May 13, 2020 CTDEEP Presentation Teleconference with Local Stakeholders

Overview: Watershed Based Approach to Nutrients

• Objective:

- Develop a watershed scale approach
- Evaluating nutrient related environmental conditions and sources
- Nitrogen & Phosphorus
- Point and Nonpoint Sources
- Nutrient effects in
 - freshwater watersheds & associated embayments
 - Lakes
- Restoration and Protection

Nutrients Affecting CT Lakes

Overview: Watershed Based Approach to Nutrients

- Lakes and Associated Watersheds
- Modeling Objectives
 - Identify nutrient conditions associated with lake trophic status goals
 - Evaluate current and future frequency for harmful algal blooms
- Develop modeling capacity at CTDEEP for project models
- Coordinate with EPA HQ on application of EPA lake nutrient model in CT regarding nutrients and Harmful Algal Blooms

Modeling Overview

Nutrients in Coastal Embayments and Contributing Watershed

Overview: Watershed Based Approach to Nutrients

- Estuaries and Associated Freshwater Watersheds
- Build on existing WQ restoration activities
 - Bacteria TMDLs
 - WQ Based Permits
 - EPA Nitrogen Reduction Strategy
 - CT Second Generation Nitrogen Strate
 - Habitat improvements

SNEP Project Components

- HSPF Watershed Model
 - Hydrologic Simulation Program Fortran
 - Comprehensive
 - Hydrology & WQ
 - Addresses soil, groundwater, surface water processes
 - Storm Events
 - Point & Non-point Sources
 - Used previously in CT, RI & other states
 - Developed for Fresh water portion of watershed
- Supported by EPA and USGS

Connecticut Department of Energy and Environmental Protection

Objective: Create a tool to evaluate and predict and evaluate watershed responses based on current and future conditions

Pawcatuck Project Communication & Outreach

- Project web page
 - Updates
 - Reports
 - Data
- Interactive Story Map
- Meetings with Partners and Stakeholders to be planned

Pawcatuck Project Website

Managing Nutrients in the Pawcatuck River Watershed

An Interstate Partnership

Click on the picture above to go to the Pawcatuck Project Story Map

Extending to Other CT Embayments

Support from LISS to develop HSPF Model for rest of CT

- Pawcatuck Project is demonstration project for this concept
- Working with USGS to develop associated monitoring program
- Contracted for statewide HSPF mod update
- Considering a tiered approach to embayment modeling
- Focus on initial priority embayments
- Coordination with future updated LIS model

State Wide Beach Bacteria TMDL Nine Eagles Lake Moving Towards a Better Understanding of Bacterial

Impairments at Public Beaches in Iowa

Jason Palmer, Jim Hallmark & Jeff Berckes Iowa Department of Natural Resources

Beach Bacteria Impairments (Category 5a)

you

to with you.

NINE EAGLES STATE PARK NSBV, TMDL

DRIR

with you.

NINE EAGLES STATE PARK NSBV, TMDL

wa

ED IMPROVEMENT

on

मिति

Nine Eagles Lake

Load Summary	Seasonal Loads (org/100 mL)			
	Spring	Summer	Fall	
Observed Load	114.7	510.0	100.0	
Allowable Load	235	235	235	
Departure	N/A	275.0	N/A	
(% Reduction)	0	(53.9)	0	
TMDL		235.0		
WLA		0.0		
LA		211.5		
MOS		23.5		

	Seasonal Loads (org/day)			
Load Summary	Spring	Summer	Fall	
Observed Load	1.26E+06	5.62E+06	1.10E+06	
Allowable Load	2.59E+06	2.59E+06	2.59E+06	
Departure	N/A	3.03E+06	N/A	
(% Reduction)	0	(53.9)	0	
TMDL		2.59E+06		
WLA		0.00E+00		
LA		2.33E+06		
MOS		2.59E+05		

s with you.

Jason Palmer Jim Hallmark Jeff Berckes Iowa DNR Iowa DNR Iowa DNR 515-725-8384 515-725-8398 515-725-8391 jeff.berckes@dnr.iowa.gov jason.palmer@dnr.iowa.gov james.hallmark@dnr.iowa.gov

Comments or Questions

with you.

Division of Environmental Assessment and Restoration Water Quality Evaluation and TMDL Program

Development of Dissolved Oxygen TMDLs: Townsend Canal (3235L), Long Hammock Creek (3237B), Lake Hicpochee (3237C), C-19 Canal (3237E), and S-4 Basin (3246)

December 17, 2018

Location of the Caloosahatchee Tributary WBIDs Within the Caloosahatchee Basin

Land Use

Irrigation

Clipped Model Area

C-19 Results

Parameter	Average Annual % Error	Average Annual Error Rating	Median Annual % Error	Median Annual Error Rating
DOSAT	13.4%	Very Good	13.2%	Very Good
TN	17.8%	Very Good	21.0%	Very Good
ТР	-20.6%	Very Good	-30.7%	Good

S4 Results

Parameter	Average Annual % Error	Average Annual Error Rating	Median Annual % Error	Median Annual Error Rating
DOSAT	-8.4%	Very Good	-7.2%	Very Good
TN	-24.5%	Very Good	-29.1%	Very Good
ТР	-19.1%	Very Good	-32.7%	Good

Hicopochee Results

Parameter	Average Annual % Error	Average Annual Error Rating	Median Annual % Error	Median Annual Error Rating
DOSAT	-8.0%	Very Good	-1.5%	Very Good
TN	-2.0%	Very Good	6.7%	Very Good
TP	87.5%	Poor	162.5%	Poor

TMDL Modeling

 TN, TP, & BOD concentrations from surface runoff were reduced by the same amount in iterative model runs until DO % saturation excursions (below 38 % saturation) occurred less than 10 % of the time

Final TMDL Loads & Percent Reductions

SP A P	Waterbody (WBID)	Parameter	TMDL (maximum 7- year average load in lbs)	WLA Wastewater (% reduction)	WLA NPDES Stormwater % reduction	LA (% reduction)
NA I	S-4 Basin (3246)	TN	430,844	NA	NA	23
	S-4 Basin (3246)	TP	28,622	NA	NA	27
	S-4 Basin (3246)	BOD	664,946	NA	NA	28
	C-19 Canal (3237E)	TN	78,114	NA	NA	48
	C-19 Canal (3237E)	ТР	5,167	NA	NA	48
	C-19 Canal (3237E)	BOD	186,354	NA	NA	48
	Lake Hicpochee (3237C)	TN	4,175,743	NA	NA	2
	Lake Hicpochee (3237C)	ТР	227,423	NA	NA	2
	Lake Hicpochee (3237C)	BOD	5,768,701	NA	NA	3
	Long Hammock Creek (3237B)	TN	330,381	NA	NA	42
	Long Hammock Creek (3237B)	ТР	25,384	NA	NA	42
	Long Hammock Creek (3237B)	BOD	773,946	NA	NA	42
	Townsend Canal (3235L)	TN	300,564	NA	37	37
	Townsend Canal (3235L)	ТР	28,749	NA	38	38
	Townsend Canal (3235L)	BOD	673,151	NA	37	37

ENVIE

Existing Caloosahatchee Estuary and Lake Okeechobee BMAP Boundaries

44

Using a Computer Water-Quality Model to Derive Numeric Nutrient Criteria in Large Rivers

William Howard George

Approaches to Criteria Development and Past Model

- Reference/Statistical Approaches
- Predictive empirical relationships that link nutrients with specified water quality endpoints
- Process-based computer simulation models

2013 Qual2K Nutrient Model on 233 km segment of Lower Yellowstone River in Eastern Montana.

Qual2K - Applicability

Process Based

- Simulates state variables in well mixed (vertically and laterally) streams and rivers
 - Temp, DO, SC, N (all species), P (all Species), Phytoplankton, Benthic Algae, pH, alkalinity, ISS, CBOD
 - Handles multiple dischargers, withdrawals, tributaries, etc.

Steady-state 1-d

Qual2k - Model Outline/Preliminary Results

Qual2K - Moving Forward/Unique Problems

- AT2K modelling still to occur
- Low Alkalinity/TSS
- Unit 1 exceeding pH standards (Class 1 pH limit 8.5)
- High Groundwater NO3 levels in Clarks Fork
- Low assimilative capacity/points sources already exceeding pH standards

Thank you. Questions?

DEQ State of Despire Department of Environmented Guelly

Using PEST to Support Oregon Midcoast TMDL Development

- Oregon Midcoast Region: Temperate, wet, largely non-point source
- TMDLs in development:
 - Dissolved oxygen Nutrient, light/heat
 - Temperature Solar driven energy budget
 - Bacteria Cattle and on-site inputs
- Models and methods used:
 - HSPF
 - QUAL2Kw
 - Heat Source
 - Statistical models
 - Load Duration Curves

Using PEST to Support Oregon Midcoast TMDL Development

- PEST stands for Parameter Estimation Tool, but it does so much more
- Developed by John Doherty, though many have had a hand in its progress to date
- PEST is model independent—it can be used for any type of numeric model or suite of integrated models
- Achieves solution to ill-posed problems through inverse methods

Using PEST to Support Oregon Midcoast TMDL Development

- Model parameterization (Calibration) – PEST provides a systematic, reproducible, and transparent way of arriving at a "unique" solution with minimized error
- Pre and post calibration analysis:
 - Solution space/null space
 - Parameter identifiability
 - Parameter uncertainty
 - Observation worth

Utah Lake Nutrient Model

Nicholas von Stackelberg EPA TMDL Workshop 5/28/2020

Utah Lake Background

Large and shallow lake

- 380 km² and 3.2 m mean depth
- Reservoir managed for irrigation water supply
 "fill and spill"

Water quality characteristics

- Turbid with low transparency
- Nutrient rich with algal blooms
- Listed as impaired for harmful algal blooms

Important considerations

- Sediment resuspension due to wind/waves
- Light attenuation due to turbidity
- Wetting/drying of shallow bays
- High phosphorus retention in sediments
- Bioturbation by carp

Model Objectives

- 1) Numeric nutrient criteria development
- 2) Nutrient load allocation
- 3) Lake restoration

Utah Lake Nutrient Model Framework

Model Structure

- Cartesian grid
- > 1,000 m x 1,000 m cell size
- ≻ 452 cells
- > 3 vertical layers
 Variable depth (sigma stretched)

Stage-Surface Area-Storage

Bathymetry

Model State Variables (Water Column)

<u>EFDC</u>	<u>WA</u>	<u>SP</u>
 Flow Depth Velocity Shear Stress Water Temperature *Inorganic Solids (3 classes) * Constituent not output to WASP 	Ammonia [NH ₃ / NH ₄ ⁺] Nitrate [NO ₂ ⁻ + NO ₃ ⁻] Dissolved Inorganic Phosphate [H ₂ PO ₄ / HPO ₄ ⁻ / PO ₄ ²⁻] Dissolved Oxygen Solids (3 classes) – Sand, silt, clay Water Temperature (from WASP) Alkalinity (not implemented yet)• pH (not implemented yet)	 Phytoplankton (4 classes) Diatoms (Bacillariophyta) Green Algae as Phytoplankton Cyanobacteria (Aphanizomenon gracile) Cyanobacteria (Synechococcus; Not Nitrogen-fixed) Periphyton Particulate Organic Matter (POM) Particulate Organic Carbon (POC) Particulate Organic Nitrogen (PON) Particulate Organic Phosphorus (POP) Dissolved Organic Matter CBOD Ultimate (1 class) Dissolved Organic Nitrogen (DON) Dissolved Organic Phosphorus (DOP)

Wetting/Drying

- Biogeochemical processes?
- Standard sediment diagenesis formulation apply?
- WASP run times

Phosphorus Retention in Sediments

- ~25-50% P bound to Ca minerals
 - Stable under alkaline lake conditions
 - How to model calcite formation and incorporation of P?
- ~40-60% P bound to Fe minerals
 - Highly labile
 - Redox sensitive can be released under anoxic conditions

Source: Randall 2017

Carp

Nutrient cycling

- Carp removal project
- Bioturbation
 - Sediment resuspension
 - Macrophyte reestablishment

Model

- Separate food web model
- Describe or predict carp?

Collaborators

University of Utah

- Juhn-Yuan Su, PhD Candidate
- Dr. Michael Barber, Advisor

Utah Lake Science Panel

• Dr. James Martin

EPA

- Tina Laidlaw
- Tim Wool

UTAH DEPARTMENT of ENVIRONMENTAL QUALITY WATER QUALITY Nicholas von Stackelberg, P.E. Utah Department of Environmental Quality (801) 536-4374 nvonstackelberg@utah.gov

EPA Region 4 Modeling Approach

J. Davis EPA Region 4

Overview of nutrient modeling

- Whole watershed approach
- Linked models

EPA Region 4

Modeling overview

- Watershed
- Hydrodynamic (estuaries & lakes)
- Water quality
- Multi-year continuous simulation
 6 10 years
- Models used for:
 - TMDL load calculations
 - NPDES permit limits
 - Numeric nutrient criteria

Model configuration: Riverine

- Two-model system to represent water quality in riverine systems
 - LSPC simulates watershed loadings

EPA Region 4

Modeling overview

• WASP simulates instream water quality response

Model configuration: Lakes/Estuaries

• Three-model system to represent water quality in lakes and estuaries

- LSPC simulates watershed loadings
- EFDC simulates hydrodynamics

EPA Region 4

Modeling overview

• WASP simulates water quality response

Example linked LSPC/WASP model

Modeling overview

EPA Region 4

- 285 square mile watershed
- Mix of forested/urban/agricultural land use
- 120 LSPC subbasins & 181 WASP stream segments
 - ~80 point sources

Multi-year comparison: Hydrology

Modeling overview

EPA Region 4

50

Apr 2015

Jan 2015

Jul 2015

Oct 2015

Jan 2016

Date

Apr 2016

Jul 2016

Oct 2016

Jan 2011

 Multi-year simulations capture high and lowflow conditions

 Varying meteorological conditions

Model objectives: Assessment points

Modeling overview

EPA Region 4

- Calibrated model can interpolate data gaps
 - Spatially / Temporally

- Predict / evaluate conditions
 - Across watershed
 - At low flow / critical conditions
- Assess endpoints that vary spatially
 - Headwater vs. Wadable vs. Boatable

Model objectives: Scenario runs

• Extrapolate to novel environmental conditions

• Current conditions

EPA Region 4

Modeling overview

- Natural conditions (no anthropogenic inputs)
- TMDL conditions
- Low-flow critical conditions
- BMP implementation / evaluation

Model objectives: Load assessment

Modeling overview

EPA Region 4

- Identify spatial distribution of nutrient loads
- Identify new monitoring locations

Inform monitoring plans