

MITIGATION CREDIT DETERMINATION

Eric D. Stein

S. Ca. Coastal Water Research Project

What is a Crediting System?

Common language or currency for informing decisions about tradeoffs between ecological impacts and appropriate compensatory mitigation

Gains over time > losses over time

Restoration Site

How many credits?

Main Messages for Today

Primary objective is to determine equitable and appropriate number of credits to compensate for a given impact

 Crediting approach should be consistent with objectives of the mitigation (i.e. should reflect priority functions and services)

Construct should be transparent and easy to communicate

Issue of time is the most difficult to address

Watershed-based solutions will be most effective

Why Do We Need to Worry About This?

2008 Compensatory Mitigation Regulations

§332.2 Definitions

Credit means a unit of measure (e.g., a functional or areal measure or other suitable metric) representing the accrual or attainment of aquatic functions at a compensatory mitigation site. The measure of aquatic functions is based on the resources restored, established, enhanced, or preserved.

The Rule Does Provide Some

Help!

- The district engineer must require a mitigation ratio greater than one-to-one where necessary to account for:
 - method of compensatory mitigation (e.g., preservation)
 - the likelihood of success
 - differences between the functions lost at the impact site and the functions expected to be produced by the mitigation project
 - temporal losses of aquatic resource functions
 - the difficulty of restoring or establishing the desired aquatic resource type and functions
 - distance between the affected aquatic resource and the compensation site.
- The rationale for the required replacement ratio must be documented in the administrative record for the permit action.

Lots of Options

Basic rule sets or decision trees

 Social values and ecosystem service assessments

Function or condition assessments Developing Defensible Wetland Mitigation Ratios A Companion to "The Five-Step Wetland Mitigation Ratio Calculator"

PREPARED BY Dennis M. King, Ph.D. and Elizabeth W. Price, M.S. King and Associates, Inc. P.O. Box 490 245 C Street, Suite # 1 Solomons Island, MD 20688 Phone: (410) 326-2440 Fax (410) 3267419 Email: Kingassoc@email.com

PREPARED FOR Kathi Rodrigues NOAA, Office of Habitat Conservation, Habitat Protection Division 1315 East-West Highway, Silver Spring, MD 20910

Calculating Credits and Debits for Compensatory Mitigation in Wetlands of Western Washington

> OPERATIONAL DRAFT February 2011

Publication no. 10-06-011

Crediting & Debiting Ecosystem Services

Increasing the pace, scope and effectiveness of conservation

DOI: 10.1007/s002670010084

Wetland Mitigation Banking: A Framework for Crediting and Debiting

ERIC D. STEIN** FARI TABATABAI Regulatory Branch U.S. Army Carps of Engineers Los Angeles District P.O. Box 532711 Los Angeles, California 90053-2325, USA

PROFILE

RICHARD F. AMBROSE Environmental Science and Engineering Program University of California, Los Angeles 10833 Le Conte Avenue Los Angeles, California 90095-1772, USA

ABSTRACT / Welland mitigation banking as a resource management tool has gained popular support for its potential to provide an ecologically effective and economically efficient means to built compensatory mitigation requirements for impacts to aquatic resources. Although this management tool has been actively applied within the past 10 years (C-50n. 1988, Michaion banking, in *Bioslipaid Report88(41)*: 1–103), assessment of cratils and determination of a compensation in a mitigation bank has been a formidable

task. This study presents a framework for a systematic approach for determination of credits and debits and subsequently the compensation ratio. A model for riparian systems is developed based on this framework that evaluates credit and dehits for spatial and structural diversity continuity of habitats, invasive vegetation, hydrology, topographic complexity, characteristics of flood-prone areas, and biogeochemical processes. The goal of developing this crediting and debiting framework is to provide an alternative to the current methods of determining credits and debits in a miti gation bank and assigning mitigation ratios, such as best professional judgement or use of preset ratios. The purpose of this crediting and debiting framework is to develop a method that (1) can be tailored to evaluate ecological cond tion based on the target resources of a specific mitigation bank, (2) is flexible enough to be used for evaluation of existing or potential ecologic condition at a mitigation bank, (3) is a structured and systematic way to apply data and professional judgment to the decision-making process, (4) has an ecologically defensible basis, (5) has ease of use such that the level of expertise and time required to employ the method is not a deterrent to its application, and (6) provides a semiguantitative measure of the condition of aquatic resources that can be translated to a mitigation ratio

Key Considerations

- Applicable to target wetland types
 - Different methods may be necessary for different wetland types
- Applicable to the target geography / service area
- Level of complexity commensurate with resource function or value
- Assesses the functions or services of interest
- Easy to apply and to communicate

Set Ratios Based on Mitigation Type

Figure 5.3: Exam	ple Credit	Calculation
------------------	------------	-------------

Activity	Acres	Crediting	Credit Acres
Restoration of historic wetland area	75	1.0 : 1	75.0
Enhancement of severaly degraded areas that still meet wetland definition	17	1.0 : 1	17.0
Enhancement of marginally degraded area that still meets wetland definition	з	0.25 : 1	0.75
Adjacent upland restoration	20	0.25 : 1	5.0
Brush removal and burning in fully functioning wetland	5	0	0
Total	1 20		97.75

TABLE 1 - RECOMMENDED COMPENSATORY MITIGATION RATIOS FOR DIRECT PERMANENT IMPACTS

Mitigation Impacts	Restoration ' (re- establishment)	Creation (establishment)	Enhancement (rehabilitation)	Preservation (protection/ management)
Emergent Wetlands (ac)	2:1	2:1 to 3:1	3:1 to 10:12	15:1
Serub-shrub Wetlands (ac)	2:1	2:1 to 3:1	3:1 to 10:12	15:1
Forested Wetlands (ac)	2:1 to 3:1	3:1 to 4:1	5:1 to 10:12	15:1
Open Water (ac)	1:1	1:1	project specific ³	project specific
Submerged Aquatic Vegetation (ac)	5:1	project specific ⁴	project specific ⁵	N/A
Streams ⁶ (lf)	2:17	N/A	3:1 to 5:1*	10:1 to 15:1%
Mudflat (ac)	2:1 to 3:1	2:1 to 3:1	project specific	project specific
<i>Upland</i> ¹⁰ (ac)	<u>≥</u> 10:1 ¹¹	N/A	project specific	15:1 12

New England District, 2010

St. Paul District, 2002

Decision Rules & Simple Equations

	PROPOSED W	ETLAND MITIGAT	ION CE	REDIT	ABLE	
Factors			Option	IS		
Net Improvement		0.0**	to -		3.0	
	(see Section 3.0 for	examp	les of p	otential valu	ies)
Lipland Buffer		0.0	to		1.0	
opiand buller	(*	see Section 3.0 for	examp	les of p	otential valu	les)
Credit Schedule	Not Applicable	e After		Cor	ncurrent	Before
Credit Schedule	0**	0.1	0.1		0.3	0.5
Tomporal Loss	Not	0 to 5	5 5 to 10		10 to 20) Over 20
Temporal Loss	Applicable	years	ye	ars	years	years
	0**	-0.1	- (.2 -0.3		-0.4
Kind	(Out of Kind			In K	Kind
Killa		0	0			.4
Location	Case by Case	Drainage Ba	asin	Adjac	ent 8-Digit	8-Digit HUC
Location	0	0.1		HUC		0.4
					0.2	

**Use this option to calculate credit for Preservation.

Charleston District Mitigation Guidelines, 2010

Need More Robust Crediting System

Assesses relevant functions or services
 Anchored to clearly defined reference conditions

All Assessment are Anchored to Reference

- Empirical
- Modeled
- Expert judgment

Need More Robust Crediting System

Assesses relevant functions or services
 Anchored to clearly defined reference conditions

Output to appropriate unit of analysis
 hectares, meters, conservation units

Clear rules for combining components
 Transparent logic
 Averaging summing decision trace

Averaging, summing, decision trees

Addresses timing of compensation relative to impact

Assesses risk factors/uncertainty

Ecosystem Service Assessments

ECOSYSTEMS AND HUMAN Well-Being: Wetlands AND Water

Synthesis

Ecosystem Services Derived from Wetland Conservation Practices in the United States Prairie Pothole Region with an Emphasis on the U.S. Department of Agriculture Conservation Reserve and Wetlands Reserve Programs

Professional Paper 1745

U.S. Department of the Interior U.S. Geological Survey

Ecosystem Service Assessments

	Table 1. Ecosystem	
	Services	
	Provisioning	
1000	Food	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1.50	Fresh water ^a	
	Fiber and fuel	
	Biochemical	
	Genetic materials	
	Regulating	Teen
	Climate regulation	ECOSY
	Water regulation (hydrolo	AND H
	Water purification and wa	WELL-
	Erosion regulation	WETIA
	Natural hazard regulation	
	Pollination	AND W
	Cultural	
	Spiritual and inspirational	Synthesis
1.57	Recreational	
	Aesthetic	
	Educational	
	Supporting	
1000	Soil formation	
	Nutrient cycling	MILLENNIUM ECOS

Table 1: Target Currencies and Foundational I

Version 1. Target Currency	Tradable Unit
Water Quality- Temperature	Keal/day
Wetland habitat	Acres & Ser- vices
Salmonid habitat	Weighted linear feet
Prairie habitat	Functionally weighted acre
Water Quality- Nitrogen & Phos- phorous *	Lbs/ ye ar
Near-term Priority Currency	Tradable Unit
Carbon	Mt tonne
Streams	Weighted linear foot
Water Quality- sediment retention	Lbs/year
Medium-term Priority Currency	Tradable Unit
Water quality- flow regime	Cubic foot/see
Oak woodland	Functionally weighted acre

^{ASSEWIIIamette} Partnership , 2008

Condition or Function Assessment

A COMPREHENSIVE REVIEW of WETLAND ASSESSMENT PROCEDURES:

A Guide for Wetland Practitioners

by Candy C. Bartoldus

ENVIRONMENTAL CONCERN INC. http://www.wetland.org/publications_home.htm

United States Environmental Protection Agency National Heath and Environmental Effects Laboratory Corvallis, OR 97333 EPA/620/R-04/009 January 2004

Review of Rapid Methods for Assessing Wetland Condition

Environmental Monitoring and Assessment Program

Typical Classes of Indicators

Habitat structure, diversity, complexity
 Response guilds

Hydrology or geomorphology

Biogeochemistry

Landscape context
 Connectivity
 Buffers

Evaluate ecological processes (function) or bundles of processes (condition)

Hydrogeomorphic (HGM) Method

Assessment Output

Figure 5. HGM scores that rate functional capacity indices (FCIs) for the seven wetlands.

Condition Assessments California Rapid Assessment CRAM

Field-based, rapid tool to assess wetland condition

Applicable to all wetland types

Based on readily observable field indicators \rightarrow simple numerical output

Evaluates broad suite of wetland conditions (i.e. bundles of functions)

Validated with more intensive measures of condition

CRAM recognizes four attributes of wetland condition

Each attribute is represented by 2-3 metrics, some of which have sub-metrics.

Mitigation Assessment Based on CRAM

AA	Buffer ar	nd Lanscap	e Context		Hydrology	/	Phy	Physical Structure		Biotic Structure		
	pre	post	change	pre	post	change	pre	post	change	pre	post	change
A1	85	100	15	100	100	0	50	88	38	64	100	36
A2	85	100	15	100	100	Û	50	75	25	39	100	61
B1	85	0	(85)	100	0	(100)	63	0	(63)	31	0	(31)
B2 🥖	85	0	(85)	100	0	(100)	50	0	(50)	50	0	(50)
B3 🕻	85	0	(85)	92	0	(92)	63	0	(63)	44	0	(44)
B4	85	0	(85)	100	0	(100)	75	0	(75)	64	0	(64)
B5	85	0	(85)	100	0	(100)	75	0	(75)	60	0	(60)
												· ·
H2	0	59	59	0	92	92	0	63	63	0	100	100
H3 🖌	0	52	52	0	92	92	0	75	75	0	100	100
H4 📢	83	97	14	100	83	(17)	63	88	25	53	100	47
H5	85	93	8	100	92	(8)	63	88	25	61	100	39
100 Ft 10 - 2 - 5	Carl Co. The		A STATISTICS.	100 C 100 C 10		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Contraction of the

Setting Mitigation Ratios Los Angeles District, Corps

Before-After-Mitigation-Impact (BAMI) procedure (CRAM example)							
Functions/conditions	Impact _{Before}	Impact _{After}	Impact _{delta}	Mitigation _{Before}	Mitigation _{After}	Mitigation _{deta}	
4.1 Buffer and Landscape Context							
4.1.1 Landscape Connectivity	9	3	-6	6	6	0	
4.1.2 Percent of AA with Buffer	12	6	-6	3	9	6	
4.1.3 Average Buffer Width	3	3	0	3	12	9	
4.1.4 Buffer Condition	6	6	0	3	9	6	
RAW SCORE	15.0	8.0	-7	9.0	15.7	7	
FINAL SCORE	62.5	33.6	-29	37.5	65.3	28	
4.2 Attribute 2: Hydrology							
4.2.1 Water Source	6	6	0	6	6	0	
4.2.2 Hydroperiod or Channel Stability	9	12	3	3	9	6	
4.2.3 Hydrologic Connectivity	12	9	-3	3	12	9	
RAW SCORE	27.0	27.0	0	12.0	27.0	15	
FINAL SCORE	75.0	75.0	0	33.4	75.0	42	
4.3 Attribute 3: Physical Structure							
4.3.1 Structural Patch Richness	6	3	-3	3	9	6	
4.3.2 Topographic Complexity	6	3	-3	3	6	3	
RAW SCORE	12.0	6.0	-6	6.0	15.0	9	
FINAL SCORE	50.0	25.0	-25	25.0	62.5	38	
4.4 Attribute 4: Biotic Structure	10	2	<u> </u>	0	0		
4.4.1 Number of Plant Layers	12	9	-3	6	9	3	
4.4.2 Co-Dominant Species	6	6	0	6	12	6	
4.4.3 Percent Invasion	6	9	3	3	12	9	
4.4.5 Interspersion/Zonation	9	3	-6	3	9	6	
4.4.6 Vertical Structure	6	3	-3	3	6	3	
RAW SCORE	23	14	-9	11	26	15	
FINAL SCORE	63.9	38.9	-25	30.6	72.3	42	
OVER ALL SCORE	65.0	46.0	-19	32.0	70.0	38	

Restoration Monitoring

AAI

Table 11: CRAM Attributes and Metric So	cores for AA1 and AA2 and Maximum Scores
---	--

				Possible			
				Current Score	e ¹ (July 2008)	Maximum Scor	e Obtainable¹
-	Attri	Attributes Metrics		AA 1 (downstream)	AA2 (upstream)	AA 1 (downstream)	AA2 (upstream)
1			Landscape Connectivity	D	A	D	A
200			Buffer Sub-metrics:		-		-
S.A.	Buffe Landscap	r and e Context	 Percent of Assessment Area with Buffer 	A	A	A	А
24			- Average Buffer Width	В	D	В	D
1.00			- Buffer Condition	С	С	В	В
-			Water Source	С	С	С	С
	Hydrology		Hydroperiod or Channel Stability	В	В	A	A
1			Hydrologic Connectivity	В	A	A	A
-		Dhysical	Structural Patch Richness	D	D	А	A
STE		FIIYSIGAI	Topographic Complexity	С	С	A	A
			Plant Community Sub-metrics:		-		
			- Number of Plant Layers	А	С	А	A
	Structure	Biotic	- Number of Co-dominant Species	В	D	А	А
			 Percent Invasion 	В	A	A	A
			Horizontal Interspersion and Zonation	С	С	А	А
			Vertical Biotic Structure	D	D	А	A
			Overall AA Score ²	52.5%	58%	86%	91%

Legend

HGM Assessment Area
 CRAM Assessment Areas
 Stream

Additional Considerations

- Mitigation site location
- Type of mitigation
- **Cumulative effects**
- Type conversion
- Uncertainty
- **Temporal** loss

Site Characteristics

Wetland Site A and Wetland Site B are identical in size, shape and bio-physical characteristics and are located in the same sub-watershed on either side of Highway 66.

Landscape Context

SITE A

- > near the coast, downstream is a beach area adjacent to large healthy shellfish grounds
 - that are accessible to the community
- > upslope is agricultural land (nutrient run off)
- > wildlife corridor open from the North
- > near residential areas (aesthetics, scenic)
- > good access, adjacent public lands
- > access to many urban poor people

SITE B

- > slightly off coast, downstream is industrial site > adjacent to fishing port and small shellfish beds that
- are contaminated and remote > upslope is forest (no nutrient runoff)
- > wildlife corridor is blocked by Highway 66
- > nearby industrial sites (no proximity to people)
- > poor access, surrounded by private lands
- > access to few suburban rich people
 - King and Price 2006

Type of Mitigation

Creation

Type conversion

Restoration

Enhancement

Preservation

Increasing mitigation ratios

Considerations for Preservation

the district engineer should apply a higher mitigation ratio if the requirements are to be met through the use of preservation credits.

Ecological value
 Position relative to other resources of concern
 Threat/risk

Adjusting Mitigation Ratios Based on Risk

Adjusting Mitigation Ratios

				Paran	neters		_	·
		Α	В	С	D	E	L	
	Concurrent Creation	0	0.7	10	0	0	0	
-	Advanced Creation	0	0.7	10	5	0	0	
No.	Delayed Creation	0	0.7	10	-5	0	0	
	Concurrent Restoration	0.1	0.7	10	0	0	0	
	Original Wetland Degraded	0	1.4	10	0	0	0	
	Concurrent Enhancement	0.4	0.7	10	0	0.2	0	
	Concurrent, Enhanced Landscape	0	0.7	10	0	0	0.3	
	Concurrent, Less ideal Landscape	0	0.7	10	0	0	-0.3	
2								
	Difficult Creation	0	0.7	10	0	0.5	0	
1	Very Difficult Creation	0	0.7	10	0	0.75	0	
No.2	Same, Advanced & Risk Adjusted	0	0.7	10	5	0.2	0	

Discounting (change over time)

Mitigation Ratio Calculation for Temporal Loss

NOTE: this calculation is only for temporal loss. Initial mitigation ratio can be calculated from the equation: Initial Mitigation Ratio = Impact site loss / Mitigation site gain Impact site loss = impact site condition * unit loss (acres or feet) Mitigation site gain = mitigation site condition * unit gain (acres or feet)

Pa	ra	m	et	er	s
			_	_	_

Time horizon (generally 50 years)	50
Intial aquatic resource condition (0 - 1.0)	0.1
Final aquatic resource condition (0 - 1.0)	0.75
Years needed to reach full functionality (years)	10
Years of delays	0
Likelihood of failing	0
Landscape effects (-0.2 = 20% decrease due to landscape)	-0.3
Discount rate for comparing values at different times	0.05
Likelihood of failing Landscape effects (-0.2 = 20% decrease due to landscape) Discount rate for comparing values at different times	-0.3 0.05

Likelihood of failure Please enter a number between 0 (0% chance of failure) and 1.0 (100% chance of failure).

3.1

Final Mitigation Ratio

Table 1. Calculated based on a time hor		
	NAM CRIME	
Conc		
D		
Concur		
Original We		
Concurren		
Concurrent, Enha		
Concurrent, Less		
Di		
Same, Advanced &		
Same, Advanced &		

d compensation ratios for a variety of hypothetical compensation scenarios, rizon (T_{max}) of 50 years.

							COMPENSATION		
				RATIOS					
	Parameters						Discount Rate		
	А	В	С	D	Е	L	0%	5%	10%
Concurrent Creation	0	0.7	10	0	0	0	1.6	1.9	2.3
Advanced Creation	0	0.7	10	5	0	0	1.4	1.5	1.4
Delayed Creation	0	0.7	10	-5	0	0	1.8	2.5	3.8
Concurrent Restoration	0.1	0.7	10	0	0	0	1.9	2.2	2.7
Original Wetland Degraded	0	1.4	10	0	0	0	0.8	1.0	1.2
Concurrent Enhancement	0.4	0.7	10	0	0.2	0	7.0	8.3	10.2
Concurrent, Enhanced Landscape	0	0.7	10	0	0	0.3	1.2	1.5	1.8
Concurrent, Less ideal Landscape	0	0.7	10	0	0	-0.3	2.3	2.7	3.3
Difficult Creation	0	0.7	10	0	0.5	0	3.2	3.8	4.7
Very Difficult Creation	0	0.7	10	0	0.75	0	6.4	7.6	9.4
Same, Advanced & Risk Adjusted	0	0.7	10	5	0.2	0	1.8	1.8	1.8

Ways to Reduce Risk/Uncertainty

Up-front mitigation

Watershed-based decision making

Coordination with existing preserves
 Adjacent
 Additional work within preserved lands
 Cooperation on long-term management

Watershed-based Decisions

Closing Thoughts

Choose the right tool

Keep it simple

Clear communication

Move toward watershed approach

