Committee Evaluated

1. Subset of Mitigation Projects 25 studies, 600+ sites

2. Field Trips

3. Presentations

- Environmental Groups
 - National Audubon Society, Audubon of FL
 - Environmental Defense
 - The Nature Conservancy
- <u>State and Regional Management</u> Organizations
 - MD, FL, WI, CA
- <u>Developers</u>
 - Greater Orlando Aviation Authority
 - Irvine Ranch Water District
 - Rancho Mission Viejo
- Wetland Consultants

Committee Conclusions

FWS Wetlands Inventory: <u>404 programs</u> may be <u>discouraging</u> development & requests for permits.

<u>Unlikely</u> institutional mechanisms in place were assuring that promised mitigation was being <u>secured</u> or that the mitigation being implemented used the <u>best available technical knowledge</u> of wetland restoration and creation.

Conclusions

Of the compensation projects required -

Committee on Mitigating Wetland Losses

Joy Zedler (Chair), University of Wisconsin, Madison, WI	Botany
	.
Leonard Shabman (Vice Chair), Virginia Polytechnic	Economics
Institute, Blacksburg, VA	
Victoria Alvarez, CA DOT, Sacramento, CA	Wetland
	Permitting
Robert O. Evans, North Carolina State University,	Wetland
Raleigh, NC	Restoration
Royal C. Gardner, Stetson University College of Law,	Envt. Law
St. Petersburg, FL	
J. Whitfield Gibbons, Savannah River Ecology Lab,	Vertebrate
Aiken, SC	Ecology
James W. Gilliam, North Carolina State University,	Soil
Raleigh, NC	Science
Carol A. Johnston, University of Minnesota, Duluth, MN	Soil
	Science
William J. Mitsch, Ohio State University, Columbus, OH	Wetland
	Ecology
Karen Prestegaard, University of Maryland,	Geology
College Park, MD	Hydrology
Ann M. Redmond, WilsonMiller, Inc., Tallahassee, FL	Mitigation
	Banking
Charles Simenstad, University of Washington, Seattle, WA	Fisheries
R. Eugene Turner, Louisiana State University,	Coastal
Baton Rouge, LA	Ecology

Recommendations

Mitigation <u>efforts</u> should be <u>integrated</u> within <u>larger regions</u>.

<u>States</u> work with <u>federal agencies</u> to set <u>priorities</u> for wetland protection, acquisition, restoration, enhancement, and creation projects on a landscape or <u>watershed basis</u>.

Committee Conclusion

For all approaches to compensation:

- Permittee-responsible
- Mitigation banks
- In-lieu fees

Compliance Requirements:

- 1. Required compensation project is initiated <u>concurrent</u> with fill activity.
- 2. Projects are <u>constructed</u> according to established design/performance <u>criteria</u>.
- 3. Permittee provides a recognized <u>stewardship</u> organization with an easement on, or title to, the compensatory wetland site and a cash contribution appropriate for the <u>long-term monitoring</u>, <u>management and maintenance</u> of the site.

Recommendations

Corps and other responsible regulatory authorities need to commit funds to enhance <u>training of staff</u> and the <u>sharing of experiences</u> across districts.

Corps should prepare <u>region-specific manuals</u> for restoring wetland functions, organized around the 10 guidelines.

Corps and other responsible authorities should establish a <u>research program</u> to identify the practices that best achieve long-term performance.

<u>Institutional Mechanisms -</u> <u>Recommendations</u>

The committee does <u>not endorse</u> a <u>particular</u> mechanism for mitigation.

Instead recommend <u>improved performance</u> of <u>all</u> approaches

- * Permittee-responsible projects
- * 3rd party: mitigation banks & ILF programs

All these institutional systems need to provide compensatory mitigation

- Timely
- Compensates for all fills
- Integrated within watersheds
- Assures long-term sustainability and stewardship

Committee Conclusions

<u>Some types</u> of wetlands can be restored; some can be created in <u>some places</u>.

<u>Uncertainty</u> - how many and which <u>functions</u> are provided?

Committee concurs with current policy that <u>restoration</u> of former wetland is <u>preferred</u> over creation of wetland.

<u>10 guidelines</u> - self-sustaining wetlands.

Conclusions & Recommendations

Some types of wetlands are especially <u>difficult to create or restore</u> because they have unique features.

- Fens high-quality groundwater
- Bogs time for peat accumulation
- Vernal pools flat topography

Discharges to such wetlands must be **AVOIDED** to retain wetland functions.

<u>Open water ponds</u> are favored as compensation wetlands.

- Meet definition criteria of wetlands
- Limited hydrologic variability
- Do not replace all the functions of other wetland types

Conclusions

Wetlands placed in <u>atypical</u> <u>landscape</u> <u>settings</u> raised questions about their <u>long-</u> <u>term sustainability</u>.

Some <u>highly functional wetlands</u> will be **inadvertently** <u>degraded</u> by developments elsewhere in their watershed.

Overall consideration of appropriate compensatory mitigation requires a **watershed** perspective.

Compensation could then occur in the places and conditions that are most likely to achieve **sustainable functions**.