ELI Presentation: Energy is everything

by Robert Ayres

November 18-19 2021

ELI Workshop, Nov. 18-19, 2021

- This talk has two major messages.
- The first (Part I) is that capital and thermodynamic work are the only factors of production, and both are composed of the same substance - the substance of the universe -- namely Energy (Exergy). Energy can neither be created nor destroyed by human activity, so it makes no sense to think of energy as a product of capital or labor, or of any other sectoral outputs. Therefore, energy cannot be considered an intermediate product.
- The second message (Part II) is that the key to stopping global climate change due to the accumulation of greenhouse gases (GHGs) in the atmosphere, is to increase the energy (exergy) efficiency (the ratio of useful output to input) of our economy. There is a lot of room for improvement.

Schematic of a star structure

The structure of an "old" red giant before exploding as a supernova

Periodic Table showing origin of elements

\mathbf{H}_{B}							Large stars			Supernovae										
$\begin{gathered} \hline \mathbf{L i} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Be} \\ \mathrm{c} \end{gathered}$			Cosmic rays			Small stars			Manmade		B	C	N_{N}		F		Le		
$\underset{\sim}{\mathrm{Na}}$	Mg					Al			$\begin{aligned} & \text { Si } \\ & 5 \end{aligned}$			${ }_{\text {P }}$	[1	Cl	Ar	,				
K	Ca\|	$\begin{gathered} \mathrm{Sc} \\ \mathrm{~L} \end{gathered}$	$\begin{aligned} & \mathbf{T i} \\ & \mathrm{sit} \end{aligned}$	$\begin{aligned} & \mathbf{V} \\ & \mathbf{S}_{2} \end{aligned}$	$\mathbf{C r}$		Mn	Fe		Co	$\underset{\mathrm{si}}{\mathrm{Ni}}$	Cu	$\mathbf{Z n} \mid$	$\mathbf{G a}$	Ge	As	Se	${ }_{5}^{\text {Br }}$		Kr
$\mathbf{R b}$	$\overline{S r}$	Y	Zr	$\mathbf{N b}$	Mo	$\overline{T c}$	$\mathbf{R u}$	Rh	Pd	Ag	$\mathbf{C d}$	In	Sn	${ }_{5}$	Te			(e		
Cs	Ba		$\begin{aligned} & \mathrm{Hf} \\ & \mathrm{sL} \\ & \hline \end{aligned}$	Ta	$\begin{aligned} & \mathbf{W} \\ & \mathrm{sL} \end{aligned}$	Re 5	Os	$\underset{s}{\mathrm{Ir}}$	Pt	${ }^{\text {Au }}$	$\mathrm{SH}_{5}^{\mathrm{Hg}}$	TI	${ }_{\text {Pb }}$	${ }_{\text {Bi }}$	Po	${ }_{\text {At }}$		R		
(ra																				
		$\mathbf{L a}$	$\mathbf{C e}$	$\left\lvert\, \begin{aligned} & \mathrm{Pr} \\ & \mathrm{si} \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \mathrm{Nd} \\ \mathrm{~s} \\ \hline \end{gathered}\right.$	Pm	Sm	${ }_{5}$	$\underset{5}{G d}$	$\underset{5}{\mathrm{~Tb}}$	Dy	${ }_{5}$	Er	$\underset{5}{\mathrm{Tm}}$	Yb					
		Ac	Th	$\xrightarrow{\text { Pa }}$	${ }_{\text {U }}$	Np	${ }_{\text {Pu }}$	Am	Cm	$\begin{array}{\|c\|} \mathbf{B K} \\ M \end{array}$	Cf	Es	Fm	Md	No		M_{M}			

Nuclear binding energy (potential) per nucleon (MeV)

Source: [adapted from Aston 35,36; Bainbridge 32,33]

A gas cloud giving birth to new stars

A gas cloud in Casieopeia, 7000 lightyears from Earth. The red color indicates that organic compounds are present. http://photojoumal.jpl.nasagov/catalog/PLA03096.

Dust particles as chemical factories

Illustrations of ice-covered silica grains in dust clouds where chemical reactions can take place, driven by UV radiation

Source http://www.astrochem.org/sci_img/icegrain.jpg

The carbon-nitrogen cycle and the proton-proton chain

Calvin Cycle for photosythesis

Source: https://roboplant.files.wordpress.com/2013/06/calvincycle.jpg

Schematic model of the Chemoton: A self-replicating

 chemical system

Source: adapted from (Smith and Szathmary 1995, Figure 2.2 p. 21)

Phylogenetic "Tree of Life" (J. D. Crofts)

We have seen how the universe evolved after the Big Bang (assuming it did happen while the universe expanded and cooled). From a thermodynamic perspective, all the wonderful complexity of life and of civilization, has been driven by dissipating fluxes of exergy. As the exergy is dissipated - some say "destroyed" - both the entropy of the universe, and its complexity, increase. We have both disorder from order and "order from disorder" The next slides explain how we can learn to use those fluxes better.

Solar and infrared radiation fluxes

https://curryja.files.wordpress.com/2012/11/stephens2.gif

Monthly CO_{2} concentrations on Mauna Loa (NOAA) 1958-2015

RECENT TEMPERATURE TRENDS (1990-2020)

gLobal average surface temperature

Economy-wide energy intensity

(Total primary energy supply (Btu/\$PPP 2000)
Figure 1

[^0]Exergy efficiency China-US-UK 1971-2010

Sources: Brockway et al (2014); Brockway et al (2015)

Cost of power per hour as multiple of hourly wage

Energy price indices vs GDP index for the UK 1700-2010

Energy price indices (1700=100)

Source: Fouquet (2011), Broadberry et al (2013) updated and indexed by Ayres 2000-2010

Generator efficiency:

Electric power output per unit mechanical power output

Electricity production by electric utilities

and average energy conversion efficiency USA 1900-1998

Breakdown of energy requirements for a typical mid-size automobile (shown for US federal urban (highway) driving cycles as a percent of the energy content of the

Source: adapted from [Green 1994]

Lithium-ion battery pack cost \& production

 2010-2030

Source: Bloomberg New Energy Finance

Average levelized cost of onshore wind, 1984-2012

Note: Learning curve (blue line) is least square regressions: $\mathbf{R}^{\mathbf{2}} \mathbf{= 0 . 8 8}$ and $\mathbf{1 4 \%}$ learning rate
Source: Bloomberg New Energy Finance, January 2013

Global cumulative installed PV capacity and price, 1977-2015

Fig. 3. The global map of energy conversion efficiency.

At this point we come to an intellectual dichotomy. On one side (my side) energy is the substance and the essence of the universe. It cannot be created or destroyed by human activities. What we can do is to capture and utilize it for our purposes, as fluxes of exergy from nature (the sun) or from nuclear fissions in the center of the earth. On the other side are economists who divide the economy into "sectors" picture the Input-Output table - of which most do not use exergy from nature but only as embodied indirectly in other products or services. The result of this alternative view is to exaggerate the productivity of human labor (i.e. people who are employed and create "value added" in the sectors) while greatly under-estimating the productivity of energy (exergy).

[^0]: Source: Energy Information Administration, U.S. Department of Energy |ddata for a few countries from E.U. unavailable before 1993|

