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Observed Atmospheric CO2 and Temperatures 

https://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/co2_data_mlo.pdf

NOAA National Centers for Environmental information, Climate at a Glance: Global Time Series, 
published July 2019, retrieved on July 25, 2019 from https://www.ncdc.noaa.gov/cag/

https://www.esrl.noaa.gov/gmd/webdata/ccgg/trends/co2_data_mlo.pdf
https://www.ncdc.noaa.gov/cag/


33https://nca2014.globalchange.gov/report/our-changing-climate/ocean-acidification#intro-section-2
Photos: Bednarsek, et al, “Extensive Dissolution Of Live Pteropods In Southern Ocean”, Nature Geoscience,  2012, p.881 

NOAA Ocean Heat and Salt Content, https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/

Observed Oceanic Temperatures and CO2

https://nca2014.globalchange.gov/report/our-changing-climate/ocean-acidification#intro-section-2
https://www.nodc.noaa.gov/OC5/3M_HEAT_CONTENT/
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Impacts & Risks for Selected Natural, Managed, & Human Systems

IPCC, Global Warming of 1.5 C, October 2018

UNEP, Emissions Gap Report 2021
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Energy and Efficiency Challenges
• Security

‒ Physical security, e.g., energy infrastructure
‒ Availability of energy supplies, critical materials, equipment
‒ Conflict-related security impacting global energy commodities or equipment

• Economic
‒ Energy prices, price volatility, import costs
‒ Energy system investments—capital intensive, long lifetime, subject to fuel price volatility
‒ Costs of Energy Disruptions

• Environmental
– Atmosphere: 

• Pollutants (e.g., SOx, NOx, PM [PM2.5], Hg, Pb, …)
• GHGs (e.g., CO2, CH4, BC, N2O, …)

– Water: Pollutants (e.g., acids, toxics), thermal discharges, water withdrawals, physical disruption, …
– Land: Pollutants (e.g., acids, toxics), physical disruption, ….
– Habitat; Biological Diversity
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How Can We Meet Our Energy Challenges?

• End Use:  Efficiency; Electrification
o Buildings
o Industry
o Transportation

• Power:
o Renewable Energy; Fossil/CCS; Nuclear
o Energy Storage: Batteries; PHS; CAES; H2; Thermal; …
o Energy Infrastructure (T&D; EV Recharging; Pipelines)
o Negative-Emissions Technologies (ReForestation; Soil 

Restoration; BECCS; DAC; etc.)

• Fuels
o Hydrogen, NH3, others
o Biofuels

• Science:  Discovery Science; Directed Science

Much can be done with 
existing technologies, but 

further Research, 
Development, 

Demonstration, and 
Deployment (RDD&D) can

accelerate, broaden, 
deepen, and strengthen 

needed changes.

HOW DO WE MASSIVELY ACCELERATE DEPLOYMENT?
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Time Frames
RDD&D

• Political decisions ~  2-30+ years
• Technology R&D  ~  5-10+  
• Production model  ~  2-4+ 
• Financial ~  2-4++   
• Market penetration ~10++  

Capital stock turnover 
• Cars ~  15      years
• Appliances ~  10-20
• Industrial Equip. ~  10-30+
• Power plants ~  40+ 
• Buildings ~  60-80+ 
• Urban form ~100s 

Reversals?
• Land Use Change ~ 100s++
• Extinctions ~ Never

Speed and Scale
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End-Use Efficiency
Motor Drive System Efficiency
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Reducing energy loss in end-use systems has large leverage upstream!

Think Systems: Full System Energy Use; Material Supply/Use/End-Of-Life/;
Full System Emissions/Land Use/Water Impacts/Habitat/etc.

Capital ~D
Friction ~1/D5

• GHGs
• Air Toxics
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Power Sector Pathways and Challenges
• Efficiency Everywhere

• Clean Electricity:
‒ Renewable Energy 

• Solar
• Wind
• Biomass Power
• Geothermal
• Hydropower
• Ocean 

‒ Fossil Energy with CCS
‒ Nuclear Energy 

– Storage
• Diurnal
• Long Duration

– Transmission Infrastructure

All will likely contribute to clean electricity 
needs for the foreseeable future.
All face challenges: technical, economic, 
siting, variability, land use, environmental, 
policy, etc.

HOW FAR?
HOW FAST? 
HOW WELL? 

AT WHAT COST?
BEST PATHWAYS?
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Germany
9,785 MW

Solar Energy Resources

• Solar technologies have enormous resource potential: >100X current energy use
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SunShot-2011: Directly Cost Competitive Solar by 2020
(Utility Goal Achieved in 2017)
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Source: Robert Margolis, David Feldman, NREL

A Solar PV Pathway To 2 cents by 2030
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Wind Resources

• Highest quality wind resources are located in the Central states and offshore
• Combined onshore and offshore (fixed-bottom) resource is ~10,000 GW
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Typical Rotor Diameters

.75 MW 1.5 MW 2.5 MW 3.5 MW 5 MW

50m (164 ft)

66m (216 ft)

85m (279 ft)

100m (328 ft)
747

120m (394 ft)

Boeing

Wind Power

GE Wind 1.5 MW

Source: EERE/WTP

The total economic benefits: 
For R&D investments in: 
• Turbulence models; 
• Wind tunnel experiments of 

turbine aerodynamics; 
• Blade materials; 
• Airfoil design codes; 
• Demonstration and testing.

GE Haliade-X, offshore 
wind turbine: 12 MW; 

260m height; 220m rotor 
diameter 
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Onshore Turbine Scaling Challenges

Transport of an 80-meter blade to a 7-MW test turbine in Scotland illustrates logistics challenges.  
Source: USDOE, “Wind Vision: A New Era for Wind Power in the United States.” March 2015, see Chapter 2.  https://energy.gov/eere/wind/wind-vision

Manufacturing in the Field?

https://energy.gov/eere/wind/wind-vision
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Wind Advancing 
• Atmosphere to Electrons (A2e):
o Plant-level losses of up to 20% and higher due to turbine-wake interactions, turbulence, blade 

boundary layer dynamics, terrain, etc.
o Develop new, predictive high-fidelity modeling capability to study fundamental flow physics 

of whole wind plants to understand turbine-turbine & complex-terrain interactions and 
reduce costs.

Horns Rev Wind Farm, Denmark

Source: NREL



17
17

Wind Advancing 

Source: Ryan Wiser, et al, “Expert elicitation survey predicts 37% to 49% declines in wind 
energy costs by 2050”, Nature Energy, 2021, https://doi.org/10.1038/s41560-021-00810-z

https://doi.org/10.1038/s41560-021-00810-z
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Renewable Resources and Technologies

Current U.S. Generating Capacity ~ 1200 GW producing ~4100 TWh/y

• RE characteristics, including location (exclusions), technical resource potential, and grid output 
(dispatchability), were considered

• Technical resource potential shown, not economic potential

Biopower ~100 GW

CSP ~37,000 GW

Geothermal ~36 GW

Hydropower ~200 GW

PV ~80,000 GW
(rooftop ~700 GW)

Wind ~10,000 GW

- Stand-alone
- Cofired with coal 

- Trough
- Tower

- Hydrothermal
-EGS ~100 GW?

- Run-of-river

- Residential
- Commercial
- Utility-scale

- Onshore
- Offshore fixed-bottom

With thermal
storage
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Electric Power Systems

Photovoltaics

Concentrating Solar Power (CSP)

Distributed Generation
Demand Response
Distributed Storage
Smart Grid

Electric Vehicles

Wind

Variable Renewables
• Site Specific
• Variable & Uncertain

Geothermal

Hydropower BioPower

System Integration
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System Modeling

• NREL ReEDS:
o Capacity Expansion Model
o 356 regions in continental US; 134 power control 

areas; RTOs; States; NERC areas; Interconnects. 
o Temporal Resolution: 17 time slices in each year: 4 

daily x 4 seasons, 1 super-peak

• Plexos
o Commercial chronological unit commitment model 

for short term; load duration curve analysis for 
medium term; long term optimization model for new 
builds and retirements; etc.

o 5-minute dispatch/8760 hours, high penetration 
studies, and other current work. 

o ERGIS: 5,600 Generators; 60,000+ transmission nodes; 
all transmission 69+ kV
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Summer 
Peak

Spring
Off-Peak

Baseline 80% RE-ITI 2010 Case

Electricity supply and demand can be balanced in every hour of 
the year in each region with 80% electricity from renewables*

*Full reliability analysis not conducted in RE Futures
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Seasonal Challenge

• Denholm et al

Source: Denholm, et al, Joule, 2021
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Firm capacity in summer (top) 
and winter (bottom) by 
technology type for the seven 
base scenarios.

Imports = hydropower imports from 
Canada, PSH = pumped-storage 
hydropower, DPV = distributed PV, UPV = 
utility-scale PV, RE-CT = RE-fueled 
combustion turbine, and O-G-S = oil, gas, 
and steam. The number associated with 
the battery entries is the duration (in 
hours) for that battery type

RE to 100% in 2050—
System Capacity

Source: Cole, et al, Joule, 2021
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NREL    |    24

Fixed Capacity Factor, Current & Future Costs 
at 120h Duration

Current

Future

Source: Hunter, et al,, Joule, 2021



NREL, Renewable Electricity Futures, 80%-by-2050 RE scenarios 

80% RE-ITI scenario Constrained Transmission

As RE deployment increases, additional transmission 
infrastructure is required

25

Source: NREL
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RE to 100% in 2050—System Cost, Carbon Cost, Capacity

26

Source: Cole, et al, Joule 2021

Average bulk power costs are $0.030/kWh for 57% RE,  $0.033/kWh for 80%, $0.035/kWh for 
90% (and constant case), $0.036/kWh for 95%, and $0.039/kWh for 100%, but marginal costs 
increase significantly for the last few percent of penetration, particularly for 95% to 100%. 

Source: Cole, Gates, Mai,  Electricity Journal, 2021



High RE Futures Impacts on (Emissions, Water) Land Use
(Example of 80% RE from RE Futures, with NO additional electrification)

Land Use Compared:
Coal: 1 meter thick seam  ~1800 kWh/m2

Solar:                                    ~350 kWh/m2 per year
Solar PV power =  1 meter thick coal seam in ~5 years

Major U.S. Coal beds, 80% are < 5m thick, average 2.3m
and produce ~half of U.S. Coal; others up to ~20m thick  (Source: EIA)

Southern Appalachia Mountaintop removal = 11,000 km2 + 
2000 kms of stream channels buried under mining overburden
Source: Bernhardt & Palmer, doi: 10.1111/j.1749-6632.2011.05986.x 
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Thank You!
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