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Observed Atmospheric CO, and Temperatures
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NOAA National Centers for Environmental information, Climate at a Glance: Global Time Series,
published July 2019, retrieved on July 25, 2019 from https://www.ncdc.noaa.gov/cag/
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—— 3-Month average through Jan-Mar 2019
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Updated from Levitus er al. 2012

25

1960 1970 1980 1990 2000
Year

2010

-10

2020 188mm

NOAA Ocean Heat and Salt Content, https://www.nodc.noaa.gov/OC5/3M HEAT CONTENT/

As Oceans Absorb CO,, They Become More Acidic
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Photos: Bednarsek, et al, “Extensive Dissolution Of Live Pteropods In Southern Ocean”, Nature Geoscience, 2012, p.881
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Impacts & Risks for Selected Natural, Managed, & Human Systems
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Energy and Efficiency Challenges

Security

— Physical security, e.g., energy infrastructure

— Auvailability of energy supplies, critical materials, equipment

— Conflict-related security impacting global energy commodities or equipment

Economic

— Energy prices, price volatility, import costs

— Energy system investments—capital intensive, long lifetime, subject to fuel price volatility
— Costs of Energy Disruptions

Environmental
— Atmosphere:
* Pollutants (e.g., SOx, NOx, PM [PM, ], Hg, Pb, ...)
* GHGs (e.g., CO,, CH,, BC, N,0, ...)
— Water: Pollutants (e.g., acids, toxics), thermal discharges, water withdrawals, physical disruption, ...
— Land: Pollutants (e.g., acids, toxics), physical disruption, ....
— Habitat; Biological Diversity



 End Use: Efficiency; Electrification
o Buildings
o Industry
o Transportation

* Power:
o Renewable Energy; Fossil/CCS; Nuclear
o Energy Storage: Batteries; PHS; CAES; H,; Thermal; ...
o Energy Infrastructure (T&D; EV Recharging; Pipelines)
o Negative-Emissions Technologies (ReForestation; Soil
Restoration; BECCS; DAC; etc.)

* Fuels
o Hydrogen, NH3, others
o Biofuels

* Science: Discovery Science; Directed Science

How Can We Meet Our Energy Challenges?

Much can be done with
existing technologies, but
further Research,
Development,
Demonstration, and
Deployment (RDD&D) can
accelerate, broaden,
deepen, and strengthen
needed changes.

HOW DO WE MASSIVELY ACCELERATE DEPLOYMENT?



e Political decisions
e Technology R&D
e Production model
Financial

Capital stock turnover
* Cars

* Appliances

* Industrial Equip.
* Power plants

* Buildings

e Urban form

Reversals?
* Land Use Change
* Extinctions

Market penetration

Time Frames

~ 2-30+ years
~ 5-10+

~ 2-4+

~ 2-4++
~10++

~ 15 years
~ 10-20

~ 10-30+

~ 40+

~ 60-80+
~100s

~ 100s++
~ Never

Speed and Scale



End-Use Efficiency

Motor Drive System Efficiency
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Reducing energy loss in end-use systems has large leverage upstream!

Think Systems: Full System Energy Use; Material Supply/Use/End-Of-Life/;
Full System Emissions/Land Use/Water Impacts/Habitat/etc.



e Efficiency Everywhere

e Clean Electricity:
— Renewable Energy

* Solar

 Wind
Biomass Power
Geothermal
Hydropower
Ocean
— Fossil Energy with CCS
— Nuclear Energy

— Storage
* Diurnal
* Long Duration

— Transmission Infrastructure

All will likely contribute to clean electricity
needs for the foreseeable future.

All face challenges: technical, economic,
siting, variability, land use, environmental,
policy, etc.

Power Sector Pathways and Challenges
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Solar Energy Resources

Annual average solar resource data are for a solar collector oriented toward the south at a tilt = local latitude. The data for Hawaii and the 48 contiguous states are
derived from a model developed at SUNY/Albany using geostationary weather satellite data for the period 1998-2005. The data for Alaska are derived from a 40-km
satellite and surface cloud cover database for the period 1985-1991 (NREL, 2003). The data for Germany and Spain were acquired from the Joint Research Centre of
the European Commission and is the yearly sum of global irradation on an optimally-inclined surface for the period 1981-1990.

States and countries are shown to scale, except for Alaska.
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Solar technologies have enormous resource potential: >100X current energy use
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LCOE (2019 $/kWh)

A Solar PV Pathway To 2 cents by 2030

4.6C

0.7¢ 2.0¢
2020 Benchmark Module Lower BOS and Soft Improvementsin 2030 Utility Goal
Improvements: Costs: Performance:
S0.41/W to S0.60/W to Lower O&M,
S0.17/W Efficiency S0.30/W Reduced
from 19.5% to 25% Degradation, and

Higher Energy Yield

Source: Robert Margolis, David Feldman, NREL
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Wind Resources

Great Lakes: 734 GW

Wind Speed at 90 m
mis

11.5-12.0

{ Atlantic:
1256 GW

Pacific:
930 GW

Wind Speed (mis) ' Hawaii: 637 GW GuIf Coast: 594 GW  Neio menovo vty asory
& HNe=I
Q02 o e AP AN R D PP b NEL

Qb ot et e T et et e o e ot D
4> G0 OF Qf HE AL AD g gD GP RP RO L

I\. o7 O BT W

385¢ AWS Truepower”
., %. Where science di

ience delivers performance.

* Highest quality wind resources are located in the Central states and offshore
* Combined onshore and offshore (fixed-bottom) resource is ~10,000 GW
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Wind Power

The total economic benefits:
For R&D investments in:
 Turbulence models;

« Wind tunnel experiments of
turbine aerodynamics;

 Blade materials;
« Airfoil design codes;
* Demonstration and testing.

g
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GE Haliade-X, offshore
Typical Rotor Diameters wind turbine: 12 MW;

[ﬁ 120m (394 ft) 260m height; 220m rotor
1 N diameter

i 100m (328 ft) Boeing

: 85m (279 fo) 47

i 66m (216 ft)

. 50m (164 ft)

GE Wind 1.5 MW
I5MW  15MW  25MW 3.5 MW 5 MW
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Transport of an 80-meter blade to a 7-MW test turbine in Scotland illustrates logistics challenges.
Source: USDOE, “Wind Vision: A New Era for Wind Power in the United States.” March 2015, see Chapter 2. https://energy.gov/eere/wind/wind-vision

Manufacturing in the Field?



https://energy.gov/eere/wind/wind-vision

Wind Advancing

* Atmosphere to Electrons (A2e):
o Plant-level losses of up to 20% and higher due to turbine-wake interactions, turbulence, blade
boundary layer dynamics, terrain, etc.
o Develop new, predictive high-fidelity modeling capability to study fundamental flow physics
of whole wind plants to understand turbine-turbine & complex-terrain interactions and
reduce costs.

Source: NREL
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Wind Advancing
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2015 survey results?:
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Fig. 1| Results from the 2015 expert elicitation compared with recent published estimates of realized LCOE. a,b, Dotted lines with shaded areas
extending to 2050 reflect the 2015 survey response median and the 25th-75th percentile range for the high-, median- and low-cost scenarios for onshore
(a) and offshore (b) wind?. These are compared with a number of recent published estimates of the actual (realized) LCOE for onshore and offshore wind
from 2014 to 2019-2020 (solid lines)"%31, The 2020 survey results are not plotted in this figure.

Source: Ryan Wiser, et al, “Expert elicitation survey predicts 37% to 49% declines in wind

energy costs by 2050”, Nature Energy, 2021, https://doi.org/10.1038/s41560-021-00810-z
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https://doi.org/10.1038/s41560-021-00810-z

Renewable Resources and Technologies

- Stand-alone
- Cofired with coal

CSP ~37,000 GW 5 .~ PV ~80,000 GW
- Trough } l/l/;'crl;élgermal 8 (rOOftop ~700 GW)
- Tower - Residential
- Commercial
- Utility-scale
Geothermal ~36 G Wind ~10,000 GW
- Hydrothermal - Onshore

-EGS ~100 GW? - Offshore fixed-bottom

—
B 3 -
i LAy T 9 ) | o
in . L ~
Dark = Higher Z

Light = Lower

Current U.S. Generating Cabacity ~ 1200 GW producing ~4100 TWh/y

* RE characteristics, including location (exclusions), technical resource potential, and grid output
(dispatchability), were considered

* Technical resource potential shown, not economic potential u.s. DEPARTMENT OF | Energy Efficiency &
18 ENERGY Renewable Energy



Electric Power Systems

Hydropower BioPower

Photovoltaics

i
Ay

Distributed Generation
Demand Response
Distributed Storage
Smart Grid

Electric Vehicles

Variable Renewables
e Site Specific
e Variable & Uncertain

19



* NREL ReEDS:

o Capacity Expansion Model

o 356 regions in continental US; 134 power control
areas; RTOs; States; NERC areas; Interconnects.

o Temporal Resolution: 17 time slices in each year: 4
daily x 4 seasons, 1 super-peak

[] HERC Risgior
PCA Region
Wind Ragion

" ReEDS

(capacity expansion)

* Plexos

o Commercial chronological unit commitment model
for short term; load duration curve analysis for
medium term; long term optimization model for new
builds and retirements; etc.

o 5-minute dispatch/8760 hours, high penetration
studies, and other current work.

o ERGIS: 5,600 Generators; 60,000+ transmission nodes;
all transmission 69+ kV

~ PLEXOS
Energy Exemplar
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Summer
Peak

Spring
Off-Peak
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Electricity supply and demand can be balanced in every hour of
the year in each region with 80% electricity from renewables*
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Seasonal Challenge

Texas (ERCOT): 106% potential, 81% Actual California: 105% potential, 81% actual
(no additional diurnal storage) (no additional diurnal storage)
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Figure SI3. RE deficit for hypothetical 100% annual energy scenarios in Texas and California
demonstrating the saturation of diurnal storage. Positive numbers represent shortfalls in demand
that must be met with non-RE generation and negative numbers represent excess RE generation.

Source: Denholm, et al, Joule, 2021 oLl b L Energy Efficiency &
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Summer
Firm Capacity (GW)

Winter
Firm Capacity (GW)

1200 1

1000 1

800 1

600 1

400 1

200 1

1000 1

800 1

600 -

400 1

200 1

Source: Cole, et al, Joule, 2021

RE to 100% in 2050—

Imports
Battery 10
Battery 8
Battery 6
Battery 4
Battery 2
PSH

DPV

UPV

CSP
Offshore Wind
Onshore Wind
RE-CT
Biopower
Geothermal
Hydro

0-G-S

Gas-CT
Gas-CC

Coal

Nuclear

System Capacity

Firm capacity in summer (top)
and winter (bottom) by
technology type for the seven
base scenarios.

Imports = hydropower imports from
Canada, PSH = pumped-storage
hydropower, DPV = distributed PV, UPV =
utility-scale PV, RE-CT = RE-fueled
combustion turbine, and O-G-S = ail, gas,
and steam. The number associated with
the battery entries is the duration (in
hours) for that battery type
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Fixed Capacity Factor, Current & Future Costs
at 120h Duration

NG-CC =
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As RE deployment increases, additional transmission
infrastructure is required

Intra-PCA (Million MW-Miles)

POEFS RS USSR
PPy PN
Existing Inter-PCA (MW)

69 S O o §
N P ‘%?Q &@ \h@ .,"6" . . .
i D B Skt Constrained Transmission
PO Ny T Source: NREL

NREL, Renewable Electricity Futures, 80%-by-2050 RE scenarios
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Discounted System Cost (billion $)
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RE to 100% in 2050—System Cost, Carbon Cost, Capacity

16%

145 === High RE Cost
o

= Ref
12% —O— Low RE Cost

10%
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Cost Increase from Least-cost Solution

1000 4
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Scenario Renewable Energy Penetration
- Capital Fuel mm O&M B Transmission Source: Cole, Gates, Mai, Electricity Journal, 2021

Source: Cole, et al, Joule 2021

Average bulk power costs are $0.030/kWh for 57% RE, $0.033/kWh for 80%, $0.035/kWh for
90% (and constant case), $0.036/kWh for 95%, and $0.039/kWh for 100%, but marginal costs
increase significantly for the last few percent of penetration, particularly for 95% to 100%.
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féezh High RE Futures Impacts on (Emissions, Water) Land Use
(Example of 80% RE from RE Futures, with NO additional electrification)

Land Use Compared:
Coal: 1 meter thick seam = ~1800 kWh/m?
Solar: = ~350 kWh/m? per year
Solar PV power = 1 meter thick coal seam in ~5 years

Major U.S. Coal beds, 80% are < 5m thick, average 2.3m
and produce ~half of U.S. Coal; others up to ~20m thick (source: 1)
Southern Appalachia Mountaintop removal = 11,000 km? +

2000 kms of stream channels buried under mining overburden
Source: Bernhardt & Palmer, doi: 10.1111/j.1749-6632.2011.05986.x

Gross Land Use Comparisons (000 km?)

Total Contiguous U.S. 7,700
Renewable Energy* 52-81
All RE* Disrupted 4-10
Major Roads 50
Golf Courses 10
*Does not include Biomass

Source: Renewable Electricity Futures; USDA 2010,
2012; Denholm & Margolis 2008
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Thank You!
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