ECONOMIC & HUMAN DIMENSIONS RESEARCH ASSOCIATES :...

GREATER PROSPERITY THROUGH RESOURCE PRODUCTIVITY

PULLING NEW METRICS, AND PERSPECTIVES, INTO BUILDING OUR FUTURE John A. "Skip" Laitner

In discussion with colleagues from the Environmental Law Institute and others as we **Rethink Energy, the Economy and Governance**, November 19, 2021

In the spirit and tradition of Nobel Laureate and former Caltech physicist

RICHARD FEYNNAN

Plenty of Room at the Bottom, 1959

But also, and very much in the spirit and tradition of Plainfeld, NJ mathematical physicist. . . as well as economist

ROBERT U. (BOB'')AYRES

The Economic Growth Engine: How Energy and Work Drive Material Prosperity (with Benjamin Warr), 2009

But, Let's Open With. . . Key Distinctions between Energy. . . as Work, Waste and Effort

- Energy as Work generally refers the minimum high quality "exergy" necessary to transform matter into the delivered array of *requisite* or desired goods and services.
- •*Energy as Waste* means the degradation of applied but unnecessary "exergy" (*i.e., resulting in anergy*) within the social or economic process, and which produces no social or economic value (and no longer available to do work).
- Energy as Effort is the combination of work and waste, or "total exergy", as it is consumed within the social or economic processes.

More Formally, Exploring Energy as Work

Energy = Exergy + Anergy = Constant Source: Kümmel (2011)

Work = Minimum Exergy Required/Task Source: Ayres and Warr (2009), and Laitner (2015)

Waste = Total Exergy Consumed - Work

- Source: By definition
- Total Effort = Work + Waste
 - Source: By definition

Trends in Heating/Cooling Degree Days and Per Capita GDP 1950-2020 – Both Driven by Energy and Resource Inefficiencies

Source: John A. "Skip" Laitner using data from the U.S. Energy Information Administration, November 2021.

Yet, there is hope...

LORD

Day

Day

150,000 300,000 500,000

If We Take a Tesla 3 at a Stated Fuel Economy of 141 MPGe, But Then Incorporate Other Key Life-Cycle Variables – Such as Vehicle Miles Driven and Source of Electricity Generation

MPGe Given:		
	Current	
100% Clean	Electricity	
Electricity	Generation	
Production	Profile	13
92.3	41.6	
111.4	45.0	
121.4	46.6	

n.

A HARD DECADE OR A BAD CENTURY?

THIS THING CALLED ENERGY PRODUCTIVITY

UNDERSCORING THE NEED FOR A better narrative, dialogue and interactions

that stimulate:

► Imagination ► Trust

► A common understanding of the energy and resource imperatives

And a willingness to act today and tomorrow!

WHAT CONSTITUTES GREATER ENERGY PRODUCTIVITY?

GREATER ENERGY PRODUCTIVITY:

Rather than focus merely on new energy supply, we highlight three critical elements for a robust economy:

> > Yes, end-use efficiency; But also moving away from combustion technologies through accelerated deployment of renewables; and **Finally, the more** productive use of capital, materials, water and food.

Rather than Focus on the Conventional Idea of Lower U.S. Energy Intensity over Time (1950-2050)

Source: Calculations by John A. "Skip" Laitner using US EIA-BEA data, November 2021.

Examine the Connection Between U.S. Energy Productivity and Per Capita Income (1950-2020)

Source: Calculations by John A. "Skip" Laitner using US EIA-BEA data, November 2021.

And. . . Also Explore Total Energy as Effort, Waste, and Work Affecting Overall GDP

*Adapted from author calculations, and various EIA sources including, The AEO Energy Outlook 2021, and presented for purposes of illustration only; not as actual long-term energy and GDP projections...

And Rethinking the Implied Rebound. . . Versus. . . Total Work Required and GDP Impacts

- On the previous chart, comparing the "Preliminary 2020" in Column C with the 2050 "high efficiency" outcomes in Column F, for example, we see the following impacts:
 - "Work Energy" Rebound = [(50.2 / 23.4) 1] *100% = up 114.3%
 - Total "Effort" Needed = [(70.0 / 93.0) 1] *100% = down 24.8%
 - "Wasted Energy" = [(19.8 / 69.6) 1] *100% = down 71.6%
 - Total GDP Impacts = [(34,694 / 18,423) 1] *100% = up 88.3%
- With these anticipated kinds of results, let's recall the admonition of William Baumol and his colleagues: "For real economic miracles one must look to productivity growth." And in this case, productivity growth tied to tripling the existing levels of energy productivity.

MIGHT WE REALLY GO...

Key Insight: The Energy Productivity Resource Is Larger than Generally Understood or Believed

Sources: Laitner November 2021 based on DOE 1980 Policy Analysis, AER 2021, ACEEE 2012, AEO 2005, AEO 2021

Conventional assumptions about the efficiency potential

BY WASTE THAN **INGENUITY?** ...an anemic ~16-19% Global energy (in)efficiency Source: Adapted from Laitner, Smart Policies and Programs as Critical Drivers.

Exploring the full energy productivity/energy harvesting potential: ~100 or more billion barrels of oil equivalent for the U.S. Economy through the year 2050.

Enough to reduce total U.S. energy demand by ~40% or more!

With the prospect for a more robust, a more resilient and a more sustainable economy...

AND WHAT ABOUT JØBS?

ANDER

(SHE)

RAK

Highlighting the Link Between Capital Intensity and Job Creation

Source: Author calculations based on US 2018 data from IMPLAN (October 2020).

Total Jobs for Key Sectors of the U.S. Economy

Source: John A. "Skip" Laitner, using IMPLAN 2019 Data for the United States, Jan 2021.

AND WHAT IF WE ADD THIS THING **CALLED ENERGY HARVESTING TO THE MIX?**

Available Sources of Energy on Pavements and Use of Harvested Energy

Traffic Signal Street Light

Solar Radiation:

Photovoltaic effect

Temperature Gradient:

Thermoelectricity

Temperature Variation:

Smart Sensors/

Weigh-in-Motion

Structure

Stress/Strain due to Traffic load:

Piezoelectricity

A DESCRIPTION OF A DESC

PIEZOELECTRIC DANCE FLOORS

ENERGY HARVESTING ELECTRONICS & TEXTILES

FLOATOVOLTAICS

AND PERHAPS OUR BIGGEST RESOURCE?

"Americans guess because they are in too great a hurry to

- Lionel Strachey

think."

SERIE THE WORLD'S WIT AND HUMOR

An Encyclopedia of the Classic Wit and Humor of All Ages and Nations

Vol. 1

Lionel Strachey

Forgotten 23.00ks

How 'moonshot' thinking could save the world.

– Mariana Mazzucato

"Thinking is the hardest work there is which is the probable reason why so few engage in it."

– Henry Ford

High above the hushed crowd, Rex tried to remain focused. Still, he couldn't shake one nagging thought: He was an old dog and this was a new trick.

Perhaps a last word from, not my favorite physicist, but my favorite American Philosopher, Gary Larson...

The difficulty lies not with the new ideas, but in escaping the old ones...

