





# Using Narrative Nutrient Criteria in 303(d) Program Implementation in Connecticut

June 21, 2023 Traci lott, CT DEEP 2023 National 303(d) & Data Meeting



## **Presentation Goals**

- Provide an understanding of the narrative provisions in the CT WQS related to nutrients
- Provide examples develop of plans and planning approaches under 303(d) for:
  - Long Island Sound (Estuary)
  - Freshwater Wadable Rivers
  - Lakes
  - Coast Embayments





# CT Water Quality Standards



### Applicable CT Narrative Criteria & Standards

#### Narrative Nutrient Criteria (22a-426-9 Table 1)

 The loading of nutrients, principally phosphorus and nitrogen, to any surface water body shall not exceed that which supports maintenance or attainment of designated uses

#### Requirement to Control Nutrients (22a4264(a)(11))

 Requires controls such as BMPs or permit limits for point and nonpoint sources of nutrients to support maintenance of designated uses, restore impaired waters and prevent excessive anthropogenic inputs of nutrients or impairment of downstream waters



# WQS Provisions for Natural Conditions

### Natural Conditions (22a-426-4(A)(4))

• WQ Criteria do not apply to environmental conditions brought about by natural causes or conditions

### Natural (22a-426-1(47)

• Means the biological, chemical and physical conditions and communities that occur within the environment which are unaffected or minimally affected by human influences.





# Long Island Sound TMDL



# 2000 Long Island Sound TMDL

- Issue: Hypoxia due to excess nitrogen loading
  - WQ Target = DO 3.0 mg/l
  - Established TN WLA & LA
     based on modeling to achieve
     DO levels
  - Required overall 58.5%
     reduction in TN from WWTPs
     & 10% reduction from NPS
     and Stormwater





## Successful Implementation

- CT & NY met WLA
  - CT Reduction of 63.5% TN
  - 16,381 pounds TN removed at cost of \$720M
  - Facilitated by a Nitrogen Trading Program
- Decrease in NPS contributions & Atm Deposition
- Decrease in Agricultural contributions
- Improved fertilizer management
   Significant level of effort and investment based on implementation of narrative standards



## More effort still needed

### **Dissolved Oxygen in Long Island Sound Bottom Waters**







## Rivers



### **CT** Approach to Phosphorus Management





### **CT** Approach to Phosphorus Management



Total Forested Condition

Current Land Cover Upstream WWTP Discharge

A WWTP

**Enrichment Factor** 

gy and Environmental Protection

42.79

### Linking Enrichment to Algal Community Changes

A water body is considered impaired for aquatic life when major ecological changes occur

Conducted a statistical analysis to identify algae response to excess phosphorus





- Watershed approach
- WQ attainment based on WLA reductions only
- WQ based limits for TP incorporated into all fresh water POTW and industries discharging TP
- 303(d) program commitment (Advanced Restoration Plan)







### **Current Management Efforts Target Local Water Conditions**







## Lakes



# Additional Lake Specific WQS

### Lakes (22a-426-6)

- Identifies nutrient levels associated with various trophic states
- Provides consideration to adjust trophic state evaluation based on macrophyte coverage
- BMPs and other controls for NPS nutrient sources are preferred over use of biocides to address altered trophic state in lakes. (22a-426-4(a)(12))

Identifies the Natural Trophic State of the lake as the WQ Goal

| Trophic State | Parameter        | Range         |  |
|---------------|------------------|---------------|--|
| Oligotrophic  | Total Phosphorus | 0-10 μg/l     |  |
|               | Total Nitrogen   | 0-200 μg/l    |  |
|               | Chlorophyll-a    | 0-2 μg/l      |  |
|               | Secchi Disk      | 6 + meters    |  |
| Mesotrophic   | Total Phosphorus | 10-30 μg/l    |  |
|               | Total Nitrogen   | 200-600 μg/   |  |
|               | Chlorophyll-a    | 2-15 μg/l     |  |
|               | Secchi Disk      | 2-6 meters    |  |
| Eutrophic     | Total Phosphorus | 30-50 μg/l    |  |
|               | Total Nitrogen   | 600-1000 μg/l |  |
|               | Chlorophyll-a    | 15-30- μg/l   |  |
|               | Secchi Disk      | 1-2 meters    |  |
| Highly        | Total Phosphorus | 50 + μg/l     |  |
|               | Total Nitrogen   | 1000 + μg/l   |  |
| Eutrophic     | Chlorophyll-a    | 30 + μg/l     |  |
|               | Secchi Disk      | 0-1 meters    |  |



Connecticut Department of Energy and Enviro

## **Developed Narrative Translator for Lakes**

Lake specific TN and TP water quality targets set through the TMDL process Identify natural trophic state (ChI A)

Identify TN and TP concentrations related to achieving Chl A target



# Natural Trophic State WOE Analysis

| Weight of Evidence Evaiuation | EPA ChI A Targets (ppb)   | 0-2          | 2-7         | 7-30      | >30                     |
|-------------------------------|---------------------------|--------------|-------------|-----------|-------------------------|
| Bantam Lake                   | CT ChI A Targets (ppb)    | 0-2          | 2-15        | 15-30     | >30                     |
|                               | CT Total Phosphorus (ppb) | 0-10         | 10-30       | 30-50     | >50                     |
|                               | CT Total Nitrogen (ppb)   | 0-200        | 200-600     | 600-1000  | >1000                   |
|                               | CT Secchi Disk (m)        | 6+           | 2-6         | 1-2       | 0-1                     |
| Line of Evidence              | Confidence                | Oligotrophic | Mesotrophic | Eutrophic | <b>Highly Eutrophic</b> |
| Current Trophic Level         | High                      |              |             | 7         |                         |
| Taylor Landscape Analysis     | Medium                    |              | *           |           |                         |
| EPA Hollister Model           | Medium                    |              | $\star$     |           |                         |
| New England Lake & Pond Model | Medium                    | 0.457        | 0.286       | 0.21      | 0.047                   |
| Fully Forested Model          |                           |              | *           |           |                         |
| Lake Specific Studies         |                           |              | $\star$     |           |                         |

- Expected Range of Trophic Conditions
- Predictive Models for Trophic State
- Additional Lake-specific Studies
- Outcome = Chlorophyll A level associated with
   Tural Trophic State



# Modeling for TP & TN



#### Models used to Identify nutrient loads associated with ChI A Provides basis for setting WLA and LA





# Embayments



# Similar to Approach Used for Lakes

- WQ Targets in Embayment

   Dissolved Oxygen
   Clarity for Eel Grass
- Identify Embayment specific TN & TP targets to achieve WQ targets
- Translation of narrative WQS will be implemented through TMDL development





## Narrative Nutrient Criteria

- Critical tool for nutrient management
- Identifies waterbody specific nutrient targets based on water quality attainment
- Allows for adaptive changes to narrative translation and implementation targets as needed



## **Contact Information**

- Traci lott
- Connecticut Department of Energy and Environmental Protection

Traci.lott@ct.gov

