

Cybertown 2022

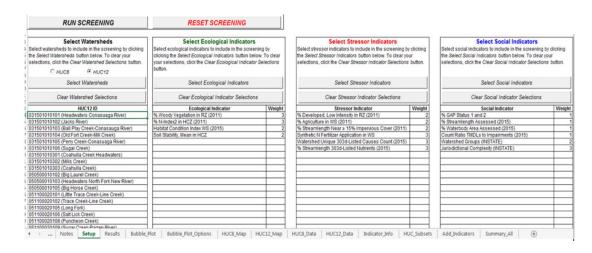
Presenters

Emily Cira

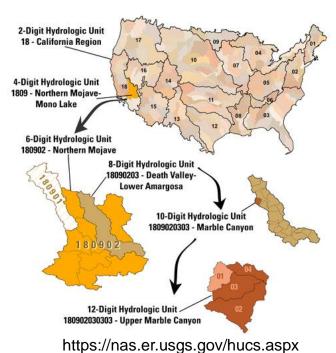
US EPA, Office of Water Watershed Branch

Andy Somor

The Cadmus Group

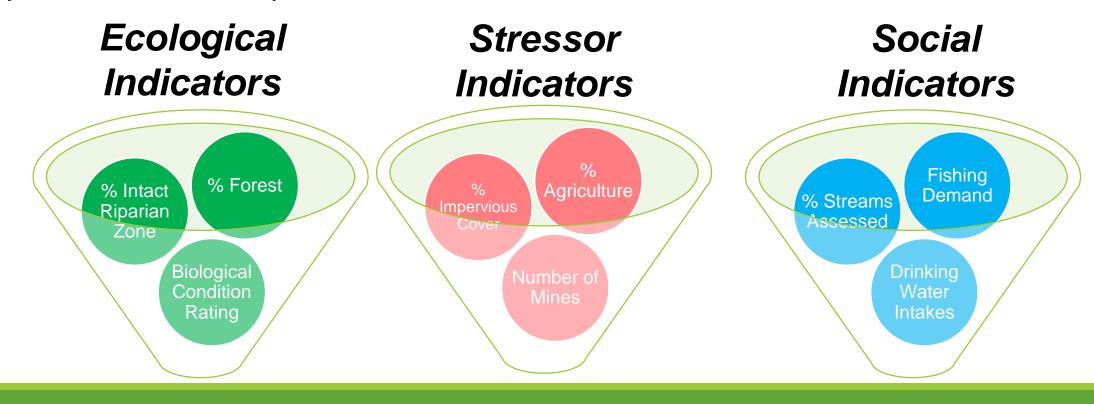


What is Recovery Potential Screening (RPS)?


- Framework for comparing a group of watersheds based on environmental, stressor, and social factors relevant for priority-setting
- Developed by EPA in 2006 to provide a systematic method, data, and tool for comparing watersheds to inform management decisions and priorities
- Variety of applications, for example:
 - TMDL development
 - State nonpoint source program five-year plans & 319 grants
 - Healthy watersheds protection
 - Wetland and riparian buffer mitigation grants
 - Water quality monitoring strategies
 - Deepwater Horizon restoration funding

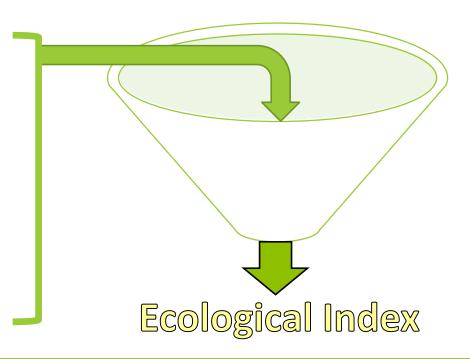
What is the RPS Tool?

- Excel file with custom macros and menus for running a screening
- Pre-loaded watershed data, HUC12 indicators calculated from national datasets
- Produced for all US states and territories
- Updates released every 1-2 years with new indicator data and tool functions
- Projects in 40+ states and territories



https://www.epa.gov/rps/downloadable-rps-tools-comparing-watersheds#Statewide

Watershed Indicators


- Indicator-based method for watershed comparison and priority-setting
- Indicators are measures of watershed attributes that are relevant to water quality restoration and protection

Ecological Indicators

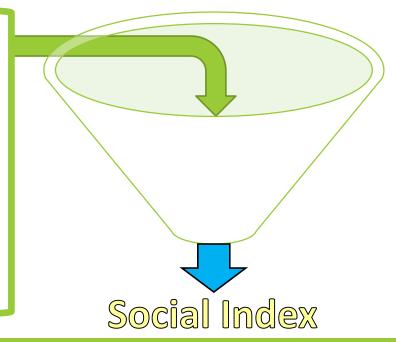
- Describe the condition of aquatic ecosystems and related watershed characteristics
- Offer insight into the capacity to maintain or regain ecological functions

- Natural Land Cover
- Aquatic Life and Habitat
- Soil Attributes
- Stream Order
- Watershed Health Index

Stressor Indicators

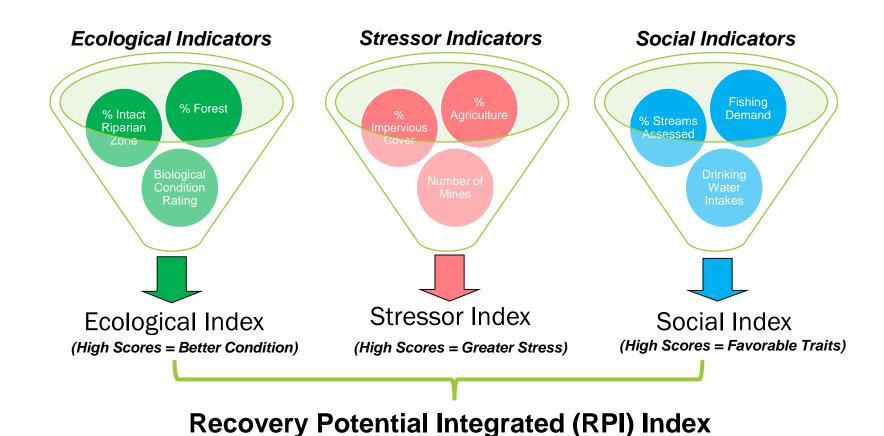
- Describe anthropogenic attributes of the watershed
- Characterize risks to aquatic ecosystem health and effort required to address those risks

- Human Population
- Human Use Land Cover
- Hydrologic Alteration
- Projected Climate and Hydrologic Change
- Impaired Waters



Social Indicators

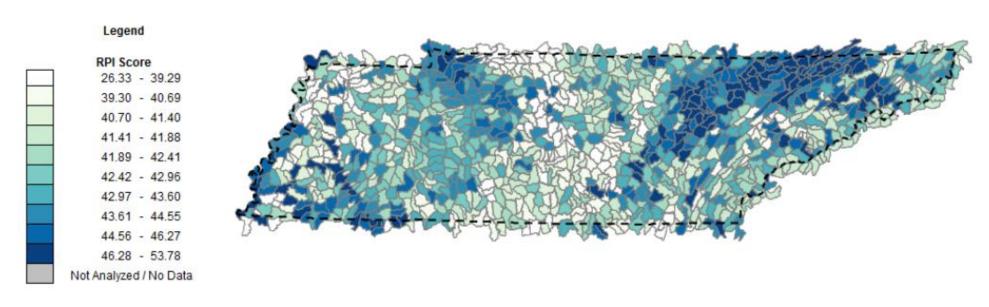
 Societal or programmatic factors that support successful water quality restoration and protection


or

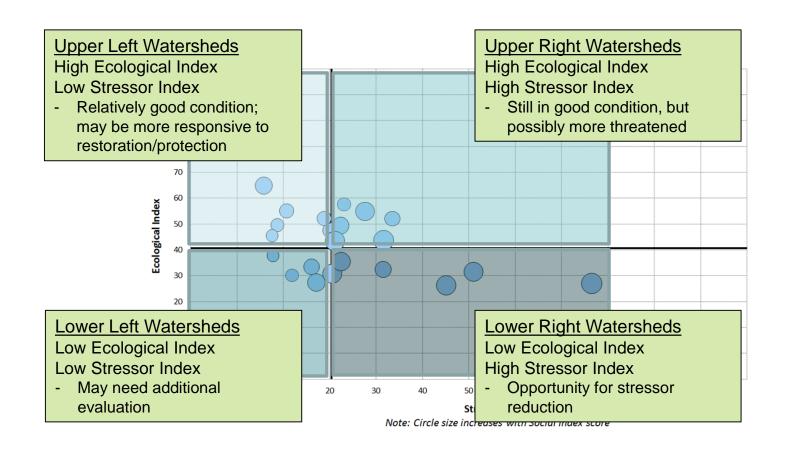
- Are otherwise important for priority-setting
 - Community Context
 - Drinking Water Protection
 - Protected Lands & Waters
 - Participation in Conservation Programs
 - Water Quality Assessments and TMDLs

RPS Index Scores

 Indicators are combined into <u>Index Scores</u> – offer overall picture of ecological, stressor, and social characteristics



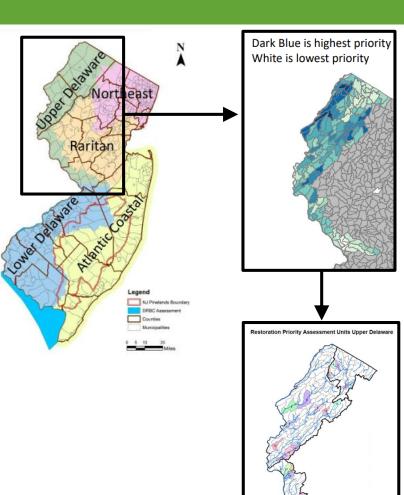
RPS Results


Watershed ID -	Watershed Name	Ecological Index -	Ecological Rank -	Stressor Index -	Stressor Rank 🕝	Social Index -	Social Rank -	RPI Score -	RPI Rank
031501010101		53.98	78	2.10	93	19.38	743	57.09	17
031501010102	Jacks River	53.17	84	0.01	7	43.97	58	65.71	,
031501010103	Ball Play Creek-Conasauga River	50.06	160	3.13	156	39.44	125	62.13	42
031501010104	Old Fort Creek-Mill Creek	41.22	582	21.81	917	38.87	131	52.76	45
031501010105	Perry Creek-Conasuaga River	43.14	481	11.60	599	31.48	287	54.34	333
031501010106	Sugar Creek	45.38	362	13.53	671	21.59	652	51.15	598
031501010301	Coahulla Creek Headwaters	42.16	537	14.59	717	26.53	471	51.37	573
031501010302	Mills Creek	37.20	812	13.53	671	21.37	662	48.35	809
031501010303	Coahulla Creek	44.65	408	9.14	475	15.52	897	50.34	672
050500010102	Big Laurel Creek	51.47	118	4.44	235	7.50	1103	51.51	560
050500010103	Headwaters North Fork New River	46.73	292	4.08	212	14.83	928	52.49	47
050500010105	Big Horse Creek	49.44	173	6.26	311	7.73	1099	50.30	67
051100020101	Little Trace Creek-Line Creek	35.39	910	14.89	730	22.32	629	47.61	842
051100020102	Trace Creek-Line Creek	35.82	885	14.94	732	22.94	602	47.94	826
051100020105	Long Fork	39.16	705	25.14	979	15.63	891	43.22	100
051100020106	Salt Lick Creek	40.38	631	15.10	737	19.82	729	48.37	808
051100020108	Puncheon Creek	36.82	833	15.30	747	18.29	789	46.60	90
051100020109	Sugar Creek-Barren River	41.01	597	15.37	750	2.98	1139	42.87	1020
051100020201	Upper Long Creek	36.27	863	16.23	787	16.23	875	45.42	942
051100020203	Pinchgut Creek-Barren River	40.81	606	13.25	656	22.58	620	50.05	699
051100020501	Headwaters Transmol Creek	37.29	804	19.23	863	28.57	394	48.88	76
← →	Setup Results	Bubble_Pl	ot Bubble	_Plot_Options	HUC12_	Map HU	IC8_Data	HUC12	Data

RPS Results

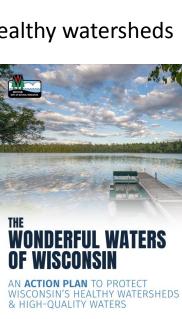
RPI Score For HUC12 Watersheds

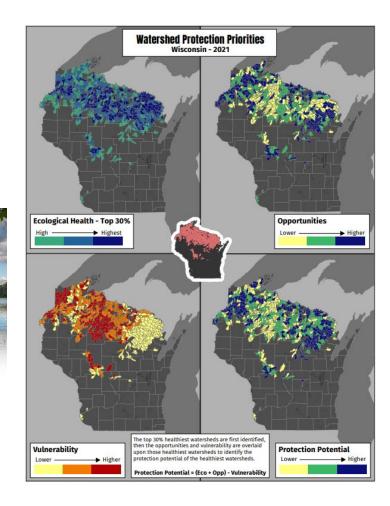
RPS Results



Example: New Jersey Department of Environmental Protection (NJDEP)

NJDEP used RPS to determine restoration priorities as part of their 2018-2020 Integrated Report


- NJ RPS Tool
 - HUC14 scale scale used in the Integrated Report
 - Additional custom indicators, including data from NJDEP (e.g., average Index of Biotic Integrity ratings)
- How the NJ RPS Tool is used
 - part of a 2-step process (RPS + comprehensive assessment)
 - Identify Assessment Units that show the best potential in achieving water quality improvements to restore designated uses
- Future of RPS Tool Inclusion of environmental justice considerations in water quality planning
 - Additional indicator in custom NJ RPS Tool: Area of HUC14 designated as an Overburdened Community under the NJ Environmental Justice Law



Example: Wisconsin Department of Natural Resources (WDNR)

WDNR's Healthy Watersheds, High-Quality Waters (HWHQW) initiative used RPS to model and identify the current healthiest watersheds in the state to enable protection prioritization.

- HWHQW Action Plan
 - Roadmap describing the steps needed to keep 100% of WI's healthy watersheds and high-quality waters protected through 2030
- WDNR adaptation of RPS Tool
 - RPS Tool → Protection Potential Screening Tool
 - Ecological Index customized PHWA WHI, used to identify healthiest watersheds in the state
 - Stressor Index → Vulnerability (trend-based stressors/ vulnerabilities)
 - Social Index → Opportunities (protection opportunities)
 - Recovery Potential Integrated Index → Protection Potential

Related Tool and Resources - WSIO

Watershed Index Online (WSIO): Free, publicly available data library of watershed indicators and a decision-support tool

- WSIO data library: over 400 indicators, measuring a wide variety of ecological, stressor, and social characteristics of watersheds across the contiguous US
- WSIO tool: adapted from RPS Tool code; userdefined area and indicators

https://www.epa.gov/wsio

CONTACT US

Watershed Index Online (WSIO)

About Watershed Index Online

- Introduction to WSIO
- WSIO Benefits
- Watershed Indicator Data Library

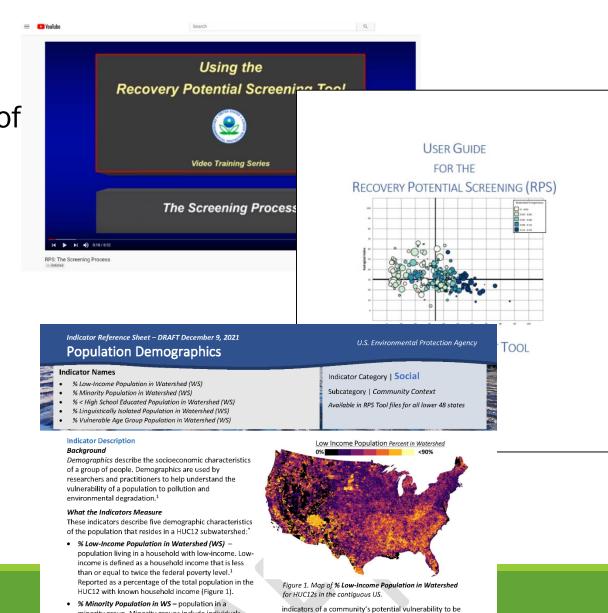
Watershed Comparison Tools

- Download and Use the WSIO Tool
- State-Specific Recovery Potential Screening (RPS) Tools
- Training Support: <u>New Indicator</u> <u>Reference Sheets</u>

Related EPA Topics

- Healthy Watersheds
- Recovery Potential Screening
- Healthy Watersheds Protection
- How's My Waterway
- Water Quality Assessment (ATTAINS) Information System

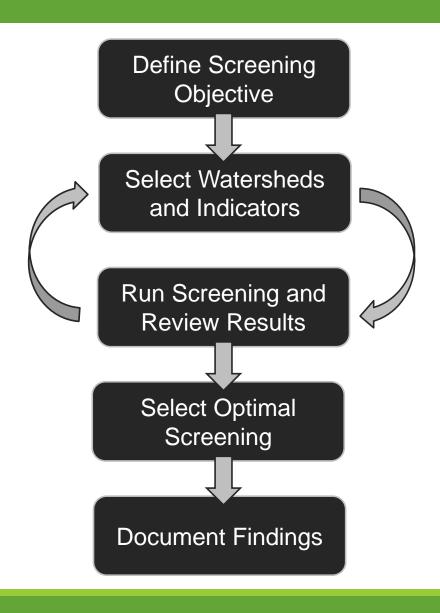
Recent updates to WSIO Data Library and RPS Tools


- ➤ New HUC12 indicators added in August 2021 relevant to:
 - Environmental justice
 - Watershed vulnerability to future climate change

New Social Indicators	New Stressor Indicators
Low-Income Population	 Projected Change in Annual and Spring Runoff
Minority Population	 Projected Change in Mean Annual and Summer
Linguistically Isolated Population	Temperature
Vulnerable Age in Watershed	 Projected Change in Annual and Summer Precipitation
(under Age 5 or over 64)	 Sea Level Rise Inundation
 Less than High School Educated Population 	 Nitrogen, Phosphorus, and Sediment Yield
Mobile Home Parks Count	Impaired Waters
	• 100-Year Flood Zone
	Hurricane Storm Surge Zone
	 NPDES Effluent Violations
	 Toxic Release and Exposure Potential
	Hazardous/Toxic Site Counts

RPS Resources and Support

- User Guide with step-by-step instructions
- Video Training Series short instructional videos that each focus on critical elements of the RPS Tool
- Reports from past projects
- Indicator Reference Sheets
- Technical support
- Coming soon
 - RPS Scenario factsheets
 - WSIO Web Service Guide
 - Updated RPS Tools in June

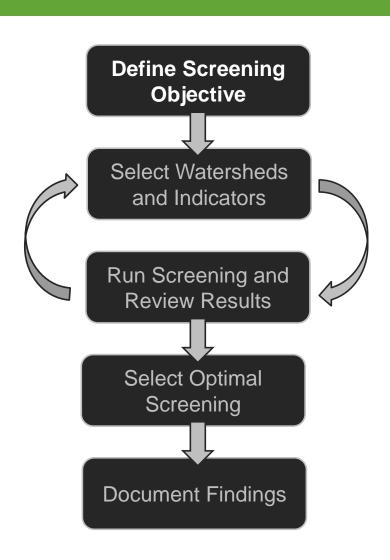

Please reach out to be added to distribution list: HWP_Team@epa.gov

minority group. Minority groups include individuals

RPS Screening Process

RPS Tool Demo

 The State of Paradise is conducting long-term planning to identify subwatersheds that will be priorities for TMDL development and implementation over the next decade


RPS Tool Demo

- DEP will focus on TMDLs for <u>nutrient impairments</u> and will consider <u>environmental justice</u> factors for planning
- The RPS Tool will be used to identify an initial group of priority HUC12s for further evaluation

RPS Tool Demo - Screening Objective

Hypothetical example:

"Identify target HUC12s for nutrient TMDL development and implementation to support ecosystem and community resilience"

RPS Tool Demo - Select Watersheds & Indicators

- HUC12 selection: only screen HUC12s with nutrient impairments
- Indicator selection: characteristics of "target" HUC12s for TMDL development and implementation
 - 1) Indicators of a potential underserved community
 - 2) Elevated nutrient sources and loading
 - 3) Relatively high watershed health compared to other candidate HUC12s

RPS Tool Demo - Select Watersheds & Indicators

Potential underserved communities

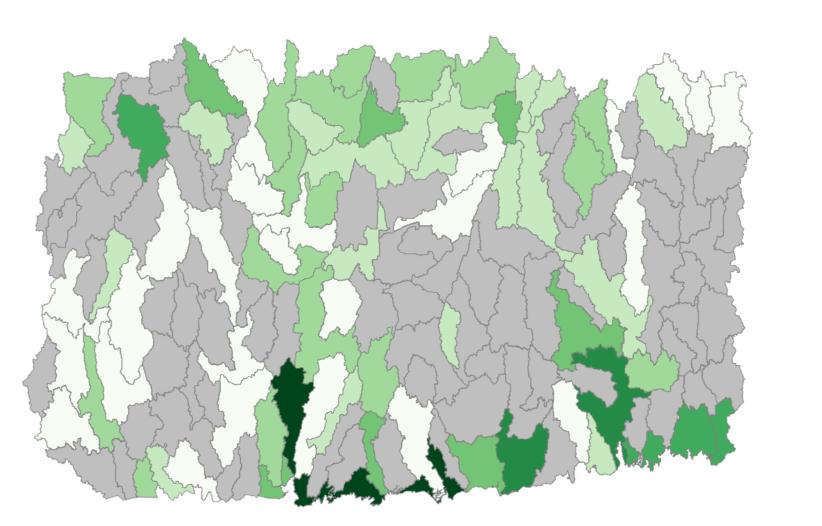
Social Indicators
% Low Income Population
% Minority Population
% < High School Educated Population
% Linguistically Isolated Population
% Vulnerable Age Groups

Elevated nutrient sources and loading

Stressor Indicators

Phosphorus Yield

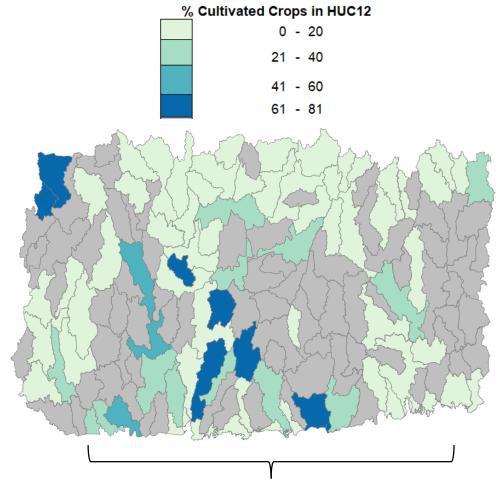
Nitrogen Yield


> Watershed health

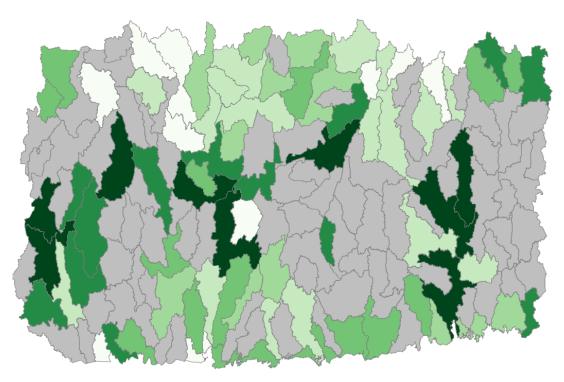

Ecological Indicators

PHWA Watershed Health Index

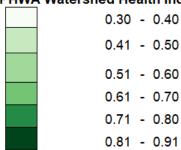

RPS Tool Demo - Subsetting HUC12s



Nutrient Impaired Assessment Unit Count in HUC12



High density development concentrated in north coast HUC12s



Extensive cropland and agriculture in south and west coast HUC12s

PHWA Watershed Health Index, State

Healthy Watersheds Protection www.epa.gov/hwp

Learn about Watersheds

· Basic Information and Answers to Frequent

Assessing Watersheds

Healthy Watersheds Data

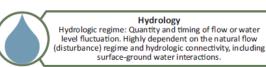
Protecting Watersheds

 Initiatives to Protect Healthy Watersheds

Related EPA Topics

Watershed Index

Landscape Condition


Patterns of natural land cover, natural disturbance regimes, lateral and longitudinal connectivity of the aquatic environment, and continuity of landscape processes.

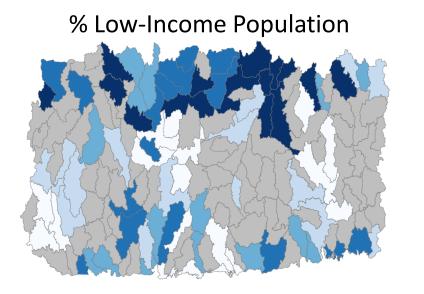
Aquatic, wetland, riparian, floodplain, lake, and shoreline habitat. Hydrologic connectivity.

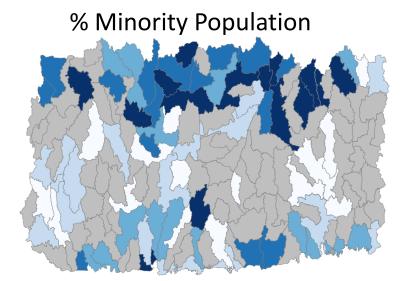
Hydrology

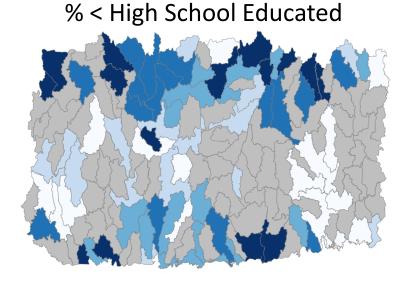
surface-ground water interactions.

Geomorphology

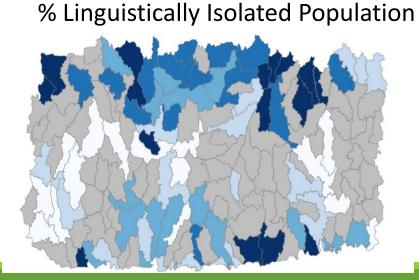
Stream channels with natural geomorphic dynamics.

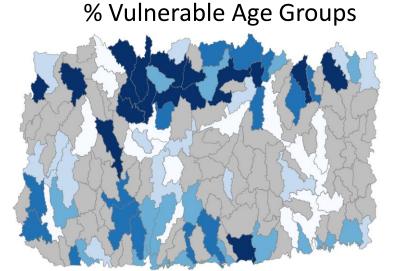

Water Quality

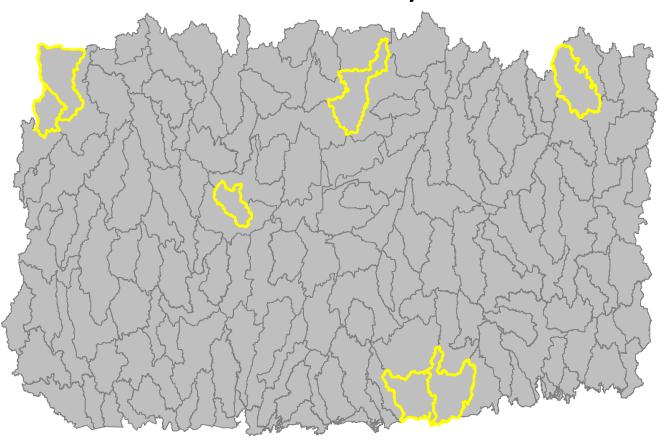

Chemical and physical characteristics of water.



Biological Condition


Biological community diversity, composition, relative abundance, trophic structure, condition, and sensitive species.





0 - 20th Percentile
21 - 40th Percentile
41 - 60th Percentile
61 - 80th Percentile
81 - 100th Percentile

Potential Priority HUC12s

Above average Ecological, Stressor, and Social Index scores:

- 1. Freshwater Brook-Paradise River
- 2. Little River
- 3. Cedar River
- 4. Pine River
- 5. Mine Brook
- 6. Salmon Creek
- 7. Mudge Pond Brook