Sepa Using Geospatial Indicators of Watershed Condition to Support Freshwater Conservation Actions

Ryan Hill¹

Luisa Riato²

National Training Workshop on Water Quality Data, Assessment, and Plans June 2, 2022

Marc Weber¹

¹Office of Research and Development, Center for Public Health & Environmental Assessment ²Oak Ridge Institute for Science and Education c/o US EPA ORD CPHEA

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency.

Outline -

- Ryan Hill
 - Overview of geospatial data (StreamCat), Indices of watershed and catchment integrity
- •Luisa Riato
 - Application of IWI/ICI and StreamCat datasets in stream conservation
- Marc Weber
 - Accessing and using the StreamCat Data

Understanding rivers

Understanding a river requires more than knowing what is nearby

Agriculture composes 0.2% of land area near outlet of Mississippi

Understanding rivers

Rivers integrate upstream features

Understanding rivers

Understanding a river means understanding the watershed

Overview of Data

NHDPlusV2	StreamCat	ICI/IWI
Existing	Suite of	Family of
geospatial	watershed	indicators
framework	metrics we	built from
	calculated	StreamCat
	with the	data
	NHDPlusV2	

Overview of Data - NHDPlus (version 2)

- NHD Line network of streams
- 2 resolutions (24k versus 100K)
- Combined with digital elevation data to make value added product -NHDPlus (version 2)
- NHDPlusV2 available at 100K resolution
- Available for download by hydrologic region (e.g., Columbia River Basin)

Overview of Data - NHDPlus (version 2)

- Network watershed
- 1:100,000 scale
- 2.6 million stream reaches with catchments

https://github.com/NelsonMinar/vector-river-map

Topology (from-to relationships)

FROM	ТО
-	1
-	2
1	3
2	3

٠

Topology (from-to relationships)

FROM	ТО
-	1
-	2
1	3
2	3

Variable	Class
agricultural land cover on slopes ≥ 10%	disturb
agricultural land cover on slopes ≥ 20%	disturb
average runoff 1971 – 2000	natural
cattle density on farmland	disturb
commercial/industrial	disturb
cultivated crops	disturb
dam density	disturb
Dam storage in basin (DAMSTOR)	disturb
deciduous forest	natural
deciduous evergreen mixed forest	natural
estimated groundwater use	disturb
estimated surface water use	disturb
evergreen forest	natural
grassland/herbaceous	natural
ground water residence time index	natural
high intensity residential	disturb
high intensity urban	disturb
Housing unit density (HUDEN)	disturb
human population density	disturb
Imperviousness	disturb
Linear distance of sampling site to nearest	disturb
canal/ditch/pipeline (DIST_CANAL_NEAR)	
local catchment area	natural
low intensity urban	disturb
mainstem stream classified as "Canal", "Ditch",	disturb
"Pipeline" or "Artificial"	
mean annual air temperature	natural
mean annual precipitation	natural
mean basin elevation	natural
medium intensity urban	disturb
mining density	disturb

Variable	Class
mixed forest	natural
network catchment area	natural
NPDES density	disturb
open space urban	disturb
open water	natural
open wetlands	natural
pasture/hay	disturb
reach elevation	natural
reach linkage number	natural
reach slope	natural
reach stream order	natural
Road density in watershed (ROADDEN)	disturb
road length density	disturb
road/stream intersections	disturb
shrub/scrub	natural
soil depth to water table	natural
soil organic matter	natural
soil permeability	natural
soil permeability	natural
soil rock depth	natural
soils - percent clay	natural
soils - percent sand	natural
Sum of 251 major pesticide compounds (PESTIC)	disturb
Superfund National Priority List density	disturb
surficial lithography	natural
total nitrogen yield	disturb
total phosphorus yield	disturb
Toxics release inventory density	disturb
Urban + crops + pasture land cover in 600-m mainstem buffer (URBCP_MAINS)	natural
woody wetlands	natural

Each stream or local catchment has a unique ID called a "COMID"

		В	С	D	E	F	G
1	COMID	oat Area Sq Km	WsAreaSqKm	CatPctFull	WsPctFull	ClayCat	ClayWs
2	5882819	0.12	5.61	0	91.57		6.08
3	5881421	0.53	0.53	48.40	48.40	6.44	6.44
4	5881415	10.43	10.43	99.99	99.99	5.68	5.68
5	5881737	1.58	1.58	100	100	6.43	6.43
6	5881745	1.59	2.04	100	100	6.11	6.18
7	5881921	0.05	0.45	100	100	6.41	6.44
8	5881499	0.41	0.41	100	100	6.44	6.44
9	5881485	0.45	4.08	100	100	6.11	6.27
10	5881733	4.58	4.58	100	100	6.11	6.11
11	5881731	3.16	3.16	90.55	90.55	6.25	6.25

Local catchment metrics are identified with "Cat"

								-
	А		С		E		G	
1	COMID	CatAreaSqKm	WsAreaSqKm	CatPctFull	WsPctFull	ClayCat	ClayWs	
2	5882819	0.12	5.61	U	91.57		6.08	
3	5881421	0.53	0.53	48.40	48.40	6.44	6.44	
4	5881415	10.43	10.43	99.99	99.99	5.68	5.68	
5	5881737	1.58	1.58	100	100	6.43	6.43	
6	5881745	1.59	2.04	100	100	6.11	6.18	
7	5881921	0.05	0.45	100	100	6.41	6.44	
8	5881499	0.41	0.41	100	100	6.44	6.44	
9	5881485	0.45	4.08	100	100	6.11	6.27	
10	5881733	4.58	4.58	100	100	6.11	6.11	
11	5881731	3.16	3.16	90.55	90.55	6.25	6.25	

Full watershed metrics are identified with "Ws"

	А	В	~	D		F	Ĵ
1	COMID	CatAreaSqKm	WsAreaSqKm	CatPctFull	WsPctFull	ClayCat	ClayWs
2	5882819	0.12	5.01	0	91.57		0.08
3	5881421	0.53	0.53	48.40	48.40	6.44	6.44
4	5881415	10.43	10.43	99.99	99.99	5.68	5.68
5	5881737	1.58	1.58	100	100	6.43	6.43
6	5881745	1.59	2.04	100	100	6.11	6.18
7	5881921	0.05	0.45	100	100	6.41	6.44
8	5881499	0.41	0.41	100	100	6.44	6.44
9	5881485	0.45	4.08	100	100	6.11	6.27
10	5881733	4.58	4.58	100	100	6.11	6.11
11	5881731	3.16	3.16	90.55	90.55	6.25	6.25

Ws includes local catchment + upstream catchments

100-m riparian buffers available for some metrics ("Rp100")

	А	В	С	D	E	F	G
	COMID	CatAreaSqKmRp100	WsAreaSqKmRp100	CatPctFullRp100	WsPctFullRp100	HUDen2010CatRp100	HUDen2010WsRp100
2	5882819	0.08	1.77	100	100	34.81	34.83
3	5881749	0.60	13.58	100	100	34.82	90.94
4	5881835	0.28	13.86	100	100	39.82	89.91
5	5881495				100	30.99	112.41
6	5 2821			TT-L)	100	39.54	39.24
	Jø82815			8 8 1	100	38.23	38.23
8	5882817	Riparian	buffer		100	34.81	34.63
9	5881493				100	30.99	118.10
10	5882755		1 Je		100	34.81	34.63
		NHD	On-ne stream Off-network	twork water			

- Concept borrows from human health perspective
- Can estimate risk based on things like behavior (e.g., diet or smoking)

<u>Six key functions</u> must be present for a watershed to have integrity (Flotemersch et al. 2015):

- 1. Hydrologic regulation
- 2. Regulation of water chemistry
- 3. Sediment regulation

- 4. Hydrologic connectivity
- 5. Temperature regulation
- 6. Habitat provision

Key function	Description	Major stressors				
		Within channel	Outside channel			
Hydrologic regulation (HYD)	Maintenance of the natural timing, pattern, supply, and storage of water that flows through the watershed	 Presence and volumes of reservoirs (NABD) Stream channelization and levee construction (NA) 	 Percent of the watershed comprising agricultural land use (NLCD) Total length and density of canals/ditches (NHD) Percent imperviousness of human-related landscapes (NLCD) Alteration to and spatial arrangement of riparian vegetation (LANDFIRE) Boundaries, depths, and flows of aquifers (NA) Groundwater use (NA)* 			
Regulation of water chemistry (CHEM)	Maintenance of the natural timing, supply, and storage of the major chemical constituents of freshwaters: nutrients (nitrogen & phosphorus), salinity or conductivity, total dissolved solids, hydrogen ions (pH), and naturally occurring minor constituents (e.g., heavy metals)	 Presence and volumes of reservoirs (NABD) Stream channelization and levee construction (NA) 	 Atmospheric deposition of anthropogenic sources of nitrogen and acid rain (NADP) Percent of watershed composed of agricultural land uses (NLCD) Fertilizer application rates (FERT) Presence and density of wastewater treatment facilities (NPDES), industrial facilities (TRI), superfund sites (SUPERFUND), and mines (MINES) Cattle density (NA)* Alteration to and spatial arrangement of riparian vegetation (LANDFIRE) Chemical constituents of groundwater (NA) 			

Overview of Data - Watershed Integrity Response to stress can be approximated with a variety of potential curves - first cut was negative

linear

Overview of Data - Watershed Integrity StreamCat + Conceptual Model + Linear Approximation

Index of Watershed Integrity (IWI)

Overview of Data - Watershed Integrity StreamCat + Conceptual Model + Linear Approximation

Overview of Data - Watershed Integrity Index of Watershed Integrity (IWI)

Overview of Data - Watershed Integrity Concept expanded to local catchments

Application of IWI/ICI and StreamCat Datasets in Stream Conservation

Luisa Riato

ORISE Post-Doctoral Fellow EPA Center for Public Health and Environmental Assessment

Office of Research and Development CPHEA/Pacific Ecological Systems Division Disclaimer: The views expressed in this presentation are those of the authors and do not necessar reflect the views or policies of the U.S. Environmental Protection Agency.

Stream Management:

Historically at <u>Single</u> Spatial Scale e.g., a Watershed or Stream Reach

Hill et al. 2016. JAWRA

Stream Management at <u>Multiple</u> Spatial Scales

Watershed, Catchment and Stream-Reach scale

- Identify scale(s) which biological condition is responding to stress
- Best spatial scale(s) for management action
- Prioritize streams for effective restoration/protection

Need Framework To Link:

Landscape Information at Multiple Spatial Scales

Stream Biological Condition Data

Framework that Enables Flexibility

Landscape Integrity Data

State or Regional Watershed/Catchment/Reach Integrity data

National Index of Watershed Integrity (IWI)

National Index of Catchment Integrity (ICI)

StreamCat data

Linking Stream Biological Condition with Watershed and Catchment Integrity

Upper left quadrant Possible Candidates for Restoration – High IWI, Low ICI

<u>Upper right quadrant</u> Best candidates for Protection/Restoration – High IWI, High ICI

Lower Left & <u>Right quadrants</u> Worst Candidates for Restoration – Low IWI

Case Study 1: Puget Lowland Region/King County (WA)

Aim: Link Stream Biological Condition with <u>Two Scales</u> of Integrity -Watershed & Catchment

Case Study 1: Puget Lowland/King County (WA)

Biological data

- Macroinvertebrate Benthic Index of Biotic Integrity (B-IBI)
- 782 B-IBI samples Good, Fair or Poor condition

Watershed and Catchment Integrity data

• IWI & ICI values

Linking Macroinvertebrate B-IBI with IWI and ICI

Best Candidates for Feasible/Effective Protection & Restoration: High IWI, High ICI

Linking Macroinvertebrate B-IBI with IWI and ICI

Worst Candidates for Restoration Low Integrity Watersheds

Puget Lowland/King County Macroinvertebrate B-IBI with IWI and ICI

Case Study 2: Central Appalachia Region

Aim: Link Stream Biological Condition with <u>Three Scales</u> of Integrity – Watershed, Catchment & Reach

Linking Macroinvertebrate BCG with IWI and ICI

Linking Macroinvertebrate BCG with IWI, ICI & Reach-scale Integrity

Summary: Multiscale framework

□ Simple, flexible tool

- Apply to <u>any</u> geographic scale and biological taxa
- Optimal management decisions
 - Prioritize streams for protection and restoration
 - Identify best spatial scale for management

Riato et al. 2020. STOTEN; DOI: 10.1016/j.scitotenv.2020.139699.

Data available as zipped .csv files by:

- NHDPlus Hydroregion
- US State

Metric .csv files look like:

COMID	CatAreaSqKm	WsAreaSqKm	CatPctFull	WsPctFull	<mark>C</mark> layCat	ClayWs	SandCat	SandWs
22220519	30.3867	251.2179	100	100	32.6803	10.5478	22.2715	38.689
22220973	2.4354	2.4354	100	100	6.5947	6.5947	39.3678	39.3678
22221761	17.9739	17.9739	100	100	12.2642	12.2642	38.8328	38.8328
22220819	5.8194	49.8987	100	100	6.2451	6.3618	43.5937	40.8023
22221927	4.7646	227.8494	100	100	8.0137	7.8918	42.2042	38.2363
10313430	46.5363	440.2233	100	100	7.6801	9.9608	25.4083	29.194
22221763	16.2495	125.7507	100	100	51.21	41.3177	12.801	16.4106
9.32E+08	9.6642	113.4702	100	100	11.0082	9.8198	31.22	34.7847
22222007	5.6943	29.385	100	100	8.9843	8.4582	37.6079	37.3055
10313588	54.1071	54.1071	100	100	10.9005	10.9005	25.6186	25.6186
10313416	0.6921	1.9413	100	100	5.42	5.42	44.6373	44.6004
22220983	6.5862	179.6715	100	100	6.6474	6.2196	51.1417	41.7342
22220811	0.1008	42.0759	100	100	6.11	6.3719	41.9298	40.4589

Variables in EVERY file

- COMID the unique NHDPlus identifier
- Area for local catchment and watershed
- Coverage of the dataset i.e. missing data

Variables for specific metrics

- Each metric shown at both:
 - Catchment scale
 - Watershed scale
 - Some at riparian buffer

COMID	CatAreaSqKm	WsAreaSqKm	CatPctFull	WsPctFull	PctUrbLo2019Cat	PctUrbMd2019Cat	PctUrbHi2019Cat	PctUrbLo2019Ws	PctUrbMd2019Ws	PctUrbHi2019Ws
718276	2.3103	2.3103	100	100	0.12	0.08	0.04	0.12	0.08	0.04
718808	3.9429	3.9429	100	100	0.64	0.18	0	0.64	0.18	0
718792	5.8995	5.8995	100	100	0.5	0.15	0	0.5	0.15	0
718288	2.8125	2.8125	100	100	0.38	0.26	0.03	0.38	0.26	0.03
718882	3.6603	3.6603	100	100	0	0	0	0	0	0
718338	0.4491	5.292	100	100	0	0	0	0.17	0.15	0.03
719118	0.0027	2.0403	100	100	0	0	0	0	0	0.04
718834	2.9943	2.9943	100	100	0	0	0	0	0	0
718062	0.036	8.0676	100	100	0	0	0	0.22	0.11	0
718216	4.6404	8.685	100	100	0.21	0	0.04	0.22	0.08	0.04
718234	2.3391	10.8954	100	100	2.46	0.69	0.08	1.16	0.66	0.07
718938	13.0401	13.0401	100	100	0.27	0.08	0	0.27	0.08	0
718452	3.6702	3.6702	100	100	0.22	0.27	0	0.22	0.27	0

Advantage of current .csv delivery method:

• Simple, open, machine-readable format

Limitations of current .csv delivery method:

- Extra work to assemble all metrics or desired metrics for certain state / region
- Extra work to pull together a particular metric across states / regions
- Data difficult to ingest directly into models or applications

Why a REST API?

A REST (Representational State Transfer) API (Application Programming Interface) is:

- 1. Lightweight they rely on http standard and are format-agnostic
- 2. Independent Client and server independent data storage separate from UI and server
- 3. Scalable and flexible separation of client and server allows easy scaling, developers can easily integrate REST APIs

Example: We want fertilizer applied within catchment # 179

Example: We want fertilizer applied within watershed # 179

Example: We want percent urban for CONUS

Accessing using REST API -Search for a particular metric and get details

CEPA United States Environmenta Agency	al Protection				Search EPA.gov Hide Admin Info
Environmental Topics	Laws & Regulations	Report a Violation	About EPA		
EPA Research					CONTACT US
SMaRT Rewi	rite				
	Glacial			Match Any Hide Filters	
	Eolian Se PctEolFine[. % of AOI are	ediment, Fine-Textu A01] a classified as lithology type:	eolian sediment, fine-textured (glacial loess)		
	Glacial O PctGlacLake % of AOI are	eutwash & Glacial La Crs[AOI] a classified as lithology type:	ake Sediment, Coarse-Textured		
	Glacial O PctGlacLake % of AOI are	Putwash & Glacial La Pfine[A01] a classified as lithology type:	ske Sediment, Fine-Textured		
	Glacial T PctGlacTilC % of AOI are	ill, Clayey lay[A0I] a classified as lithology type:	glacial till, clayey		
	Glacial T PctGlacTilC % of AOI are	ill, Coarse-Textured rs[A01] a classified as lithology type:	l glacial till, coarse-textured		
	Glacial T	ill, Loamy			

Web Tool and Web Map API Interface

Output Area (in Square Kilometers)

StreamCatTools R Package

Search or jump to	/ Pull requests Issues Marketplace	Explore	4 + - 🏠 -
USEPA / StreamCatTools		⊙ Uni	watch 10 - 양 Fork 2 ☆ Star 8 -
<> Code 💿 Issues 4 🕄 Pull rec	quests 🕑 Actions 🗄 Projects 🚺	🕮 Wiki 🕕 Security 🗠 Insights	磙 Settings
양 master → 양 2 branches ा⊙ 0 tag	gs	Go to file Add file - Code -	About 袋
mhweber update title of vignette		× 9101524 4 days ago 🗿 82 commits	R package to work with the StreamCat API within R and access the full suite of
.github/workflows	Adding GitHub actions	14 months ago	(https://www.epa.gov/national-aquatic-
R	several updates based on package review ar	nd vignette updates 4 days ago	resource-surveys/streamcat-dataset-0)
inst/ extdata	add gages to extdata	17 days ago	watershed metrics
in man	updated documentation	12 months ago	streamcat
tests	added set of unit tests and updated function	ns and vignette 14 days ago	Readme
vignettes	update title of vignette	4 days ago	2 8 stars
C .Rbuildignore	more vignette updates	4 days ago	• • 10 watching

StreamCatTools R Package

0.1 Installing and loading StreamCatTools

0.2 Background

0.3 Example One

0.4 Example Two

0.5 Example Three

0.6 Example Four

0.7 Example Five

0.8 Example Six

0.9 Example Seven

0.10 Example Eight

Introduction

Marc Weber

0.1 Installing and loading StreamCatTools

To install, currently you need to install from GitHub using devtools

After installing load the library

0.2 Background

The StreamCatTools package was designed to simplify the use of StreamCat data in R, leveraging the new API for StreamCat.

0.2.1 StreamCat API

We can actually pull data into R from the StreamCat API by simply using the read_csv function from the readr package. We have to hard-wire parameters and are limited in the number of records returned through a GET request.

StreamCatTools R Package

WATERS GeoViewer

Waters Watershed Report Characterization - StreamCat

2006 National Land Cover Database Impervious Surfaces 🚯	Value	AOI Percent Covered*
Mean imperviousness of anthropogenic surfaces within catchment.	0.29%	100.00%
Mean imperviousness of anthropogenic surfaces within watershed.	0.02%	100.00%

Mine Density Active Mines and Mineral Plants in the US 🕕	Value	AOI Percent Covered*
Density of georeferenced mines and mineral plants within the local catchment.	0 sites/km²	100.00%
Density of georeferenced mines and mineral plants within the upstream watershed.	0 sites/km²	100.00%

National Anthropenic Barrier Dataset 🕕	Value	AOI Percent Covered*
Density of georeferenced dams within the local catchment (dams/square km).	0 dams/km²	100.00%
Density of georeferenced dams within the total upstream watershed (dams/square km).	0 dams/km²	100.00%
Mean NID storage volume of all dam reservoirs (NID_STORA in NID) within the local catchment (cubic meters/square km).	0 m³/km²	100.00%
Mean NID storage volume of all dam reservoirs (NID_STORA in NID) within the total upstream watershed (cubic meters/square km).	0 m³/km²	100.00%
Mean normal storage volume of all dam reservoirs (NORM_STORA in NID) within the local catchment (cubic meters/square km).	0 m³/km²	100.00%
Mean normal storage volume of all dam reservoirs (NORM_STORA in NID) within the total upstream watershed (cubic meters/square km).	0 m³/km²	100.00%

Conclusions

- StreamCat and ICI/IWI available for 2.6 million streams segments of the U.S.
- IWI/ICI + additional information can help to understand and prioritize stream conservation actions
- Accessibility to StreamCat, ICI/IWI + hundreds of other metrics will greatly expand very soon

Questions?

