

Incorporating Climate Change into Temperature TMDLs: S.F. Nooksack River Case Study

James Kardouni

WA State Dept. of Ecology Bellingham Field Office Water Quality Program TMDL Lead

06/02/2022

for ELI: Modeling Approaches for Considering Climate Change

Presentation Overview

Project setting

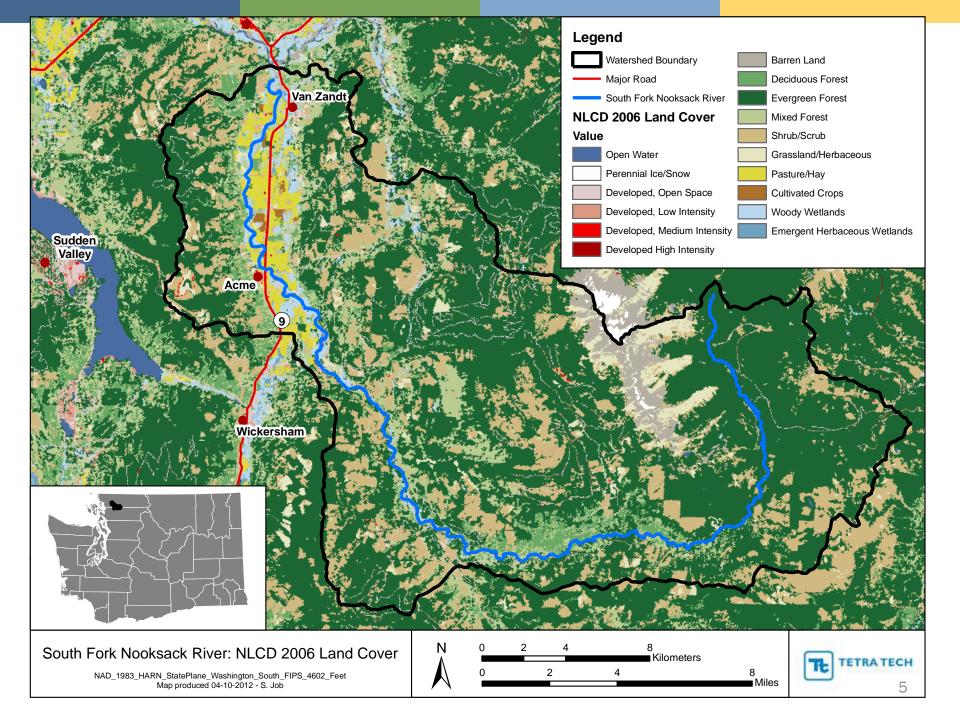
Temperature TMDL

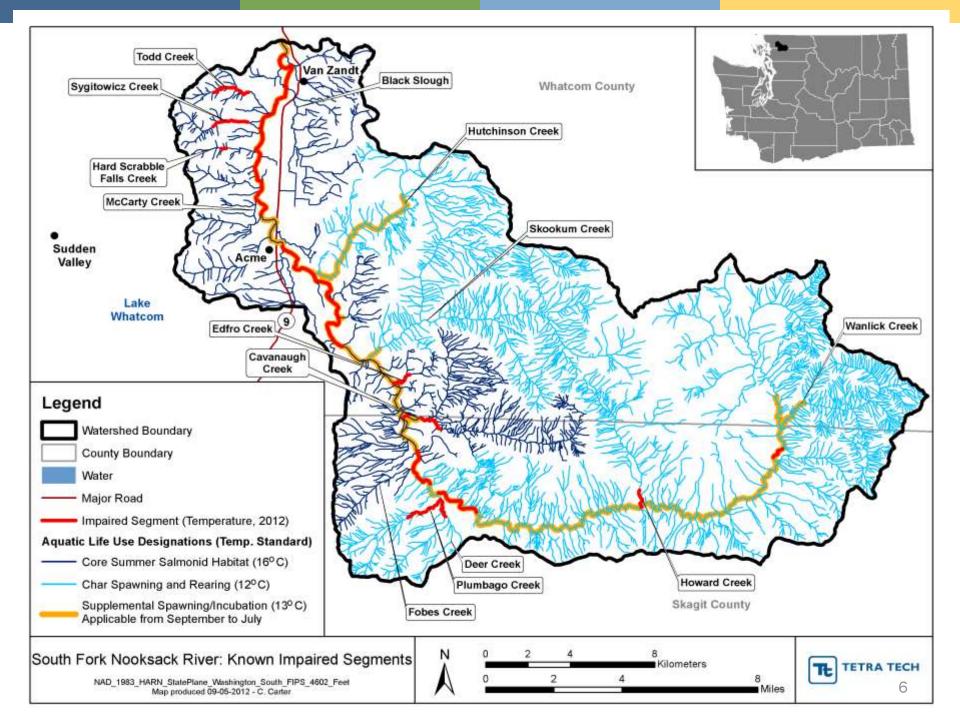
Climate change

TMDL & Climate Change

River and Habitat Restoration

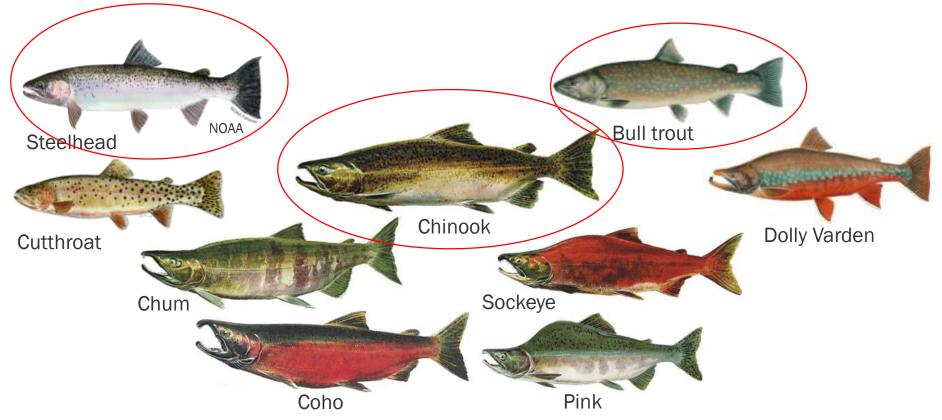
Project Team




- Nooksack Tribe
- Lummi Nation
- EPA Office of Research & Development
- EPA Region 10
- Washington State Department of Ecology
- Tetra Tech (contractor)
- UW Climate Impacts Group
- USFS

S.F. Nooksack River Study Area

- Temperature impairments requiring Total Maximum Daily Loads (TMDLs)
- 36 mainstem RM with 186 mi² watershed
- Average annual discharge 1,032 cfs
- Temperate climate, mountain snow, no glaciers
- Land Uses
 - · Forestry
 - · Agriculture
 - · Minimal rural development



S.F. Nooksack River Study Area

- Home to 9 salmonid species, <u>3 of which are threatened</u>
- Local Tribes rely on healthy salmonid populations
- Low summer flow and high temperatures have negative impacts

TMDL & Climate Change Impetus

We know that...

- Climate change will affect freshwater ecosystems
- The TMDL program is the primary framework to achieve healthy water bodies as per the CWA

But...

Majority of TMDLs assume a 'stationary climate'

So...

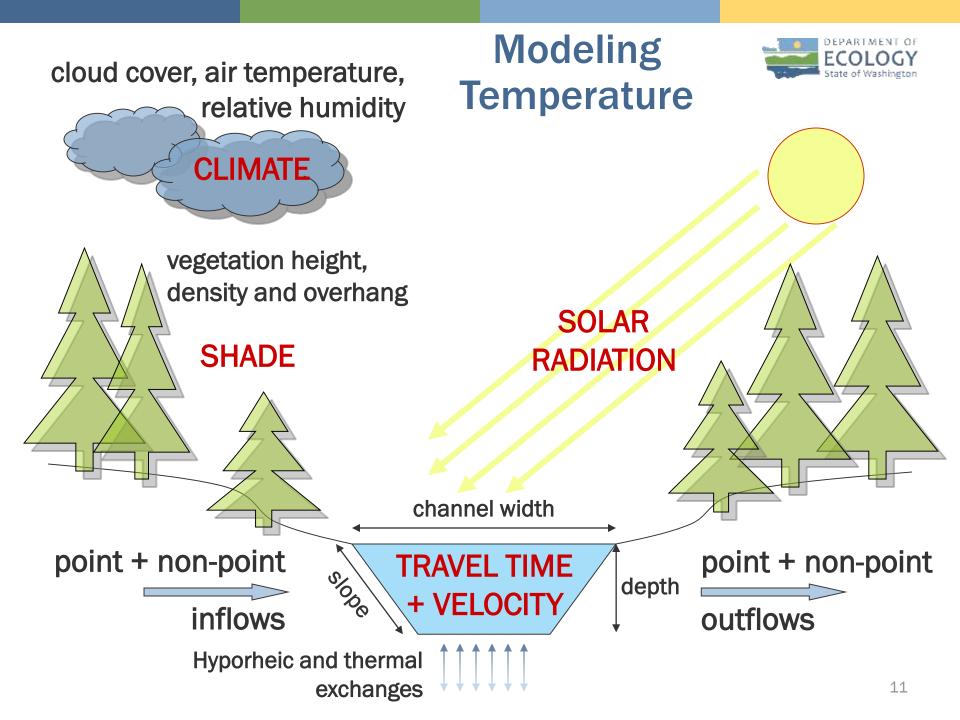
• EPA Region 10 and Office of R&D interested in how projected climate change impacts can be incorporated into a TMDL and influence restoration plans

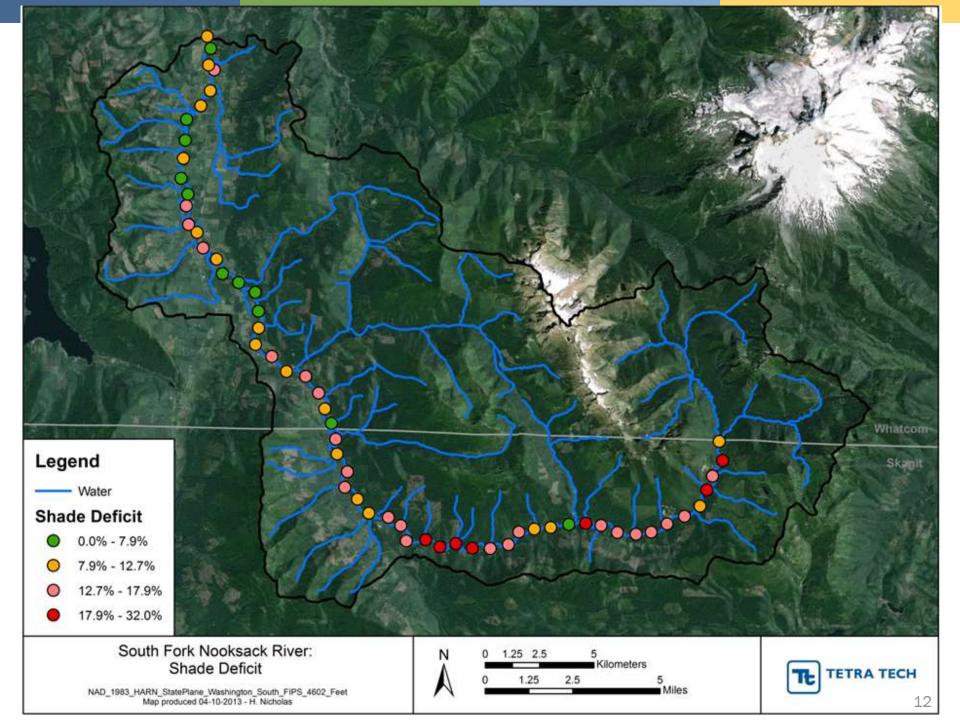
Stream Temperature... Why Model?

Fulfill objectives:

- Characterize temps and governing processes
- Simulate existing conditions
- Determine TMDL
- Evaluate different scenarios e.g.
 - Natural conditions
 - Climate change
 - Explore options for reducing temperature
- Support recovery efforts
- Understand possible outcomes
- Identify data gaps
- Adaptive management

TMDL Temperature Models

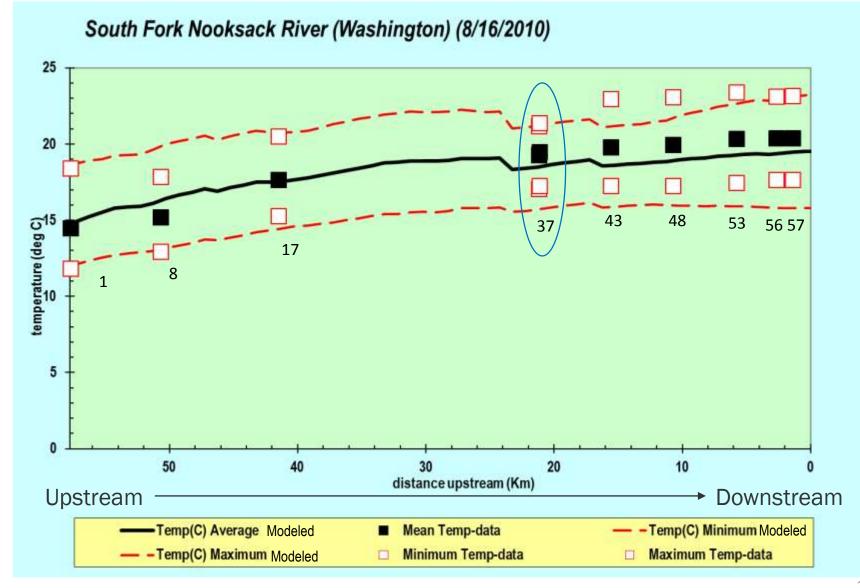

10


- Shade: Calculates effective shade based on channel geometry, riparian veg. and topography, and provides shade as input to QUAL2Kw stream model
- QUAL2Kw: Simulates in-stream temps. Under low flow and high temperature steady state critical conditions

- Channel geometry
- Topography, elevation
- Aspect
- Riparian characteristics
- Solar radiation

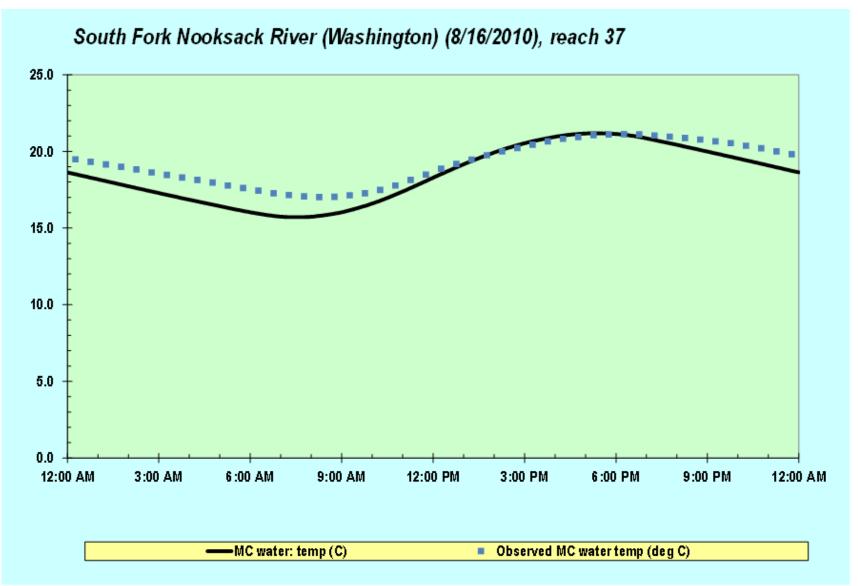
- Headwater temperatures
- Tributary temperatures
- Flow and hydraulics
- Meteorology
- Channel geometry

Models for Water Quality

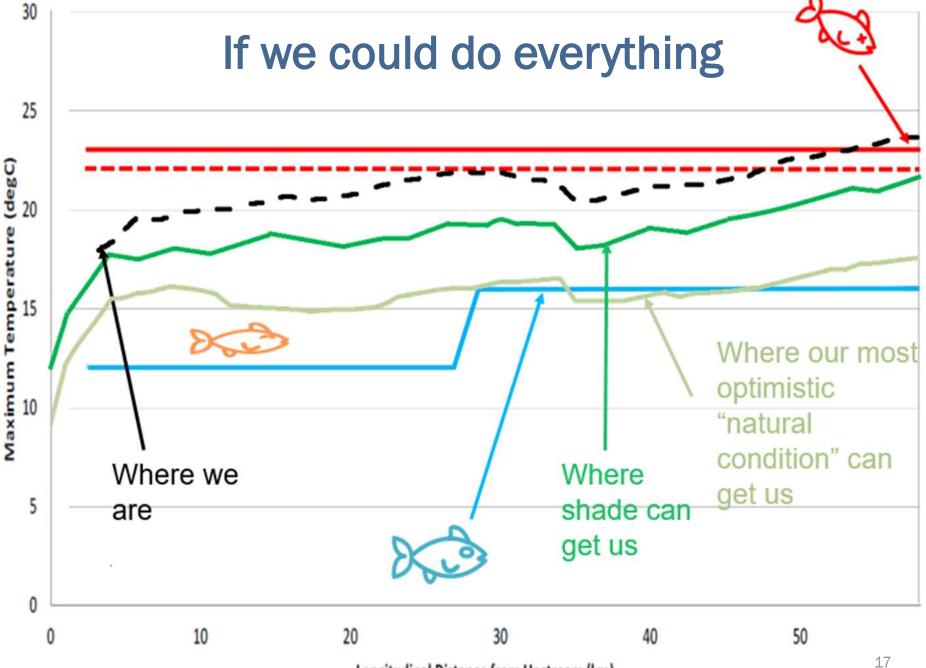

QUAL2Kw GUI (Pelletier et al. 2005)

□									
The None Fort Replaced formula Data Robre Vice Ablan Q lifters	Nel you wait to the								Kanthar, Samuel B. (EM) - St. Hun
And the And the And A T I Wanted Courts		Morrial Bad	e) 60	10	Neutral Cale	ulation	*	Zatilen DT	ρ
Theme +	s at an Conditional for	estas Eballe sell 14	managery to inte	e	Langest Cold	- 300	at Dolars Format	Sort in	1 m2 6k
	funnation + Ta		themal .				1.00	Earles - 1	and to
At 1									
		8		8	DE		G	DHR DI	
QUAL2KW (version 6.0)			_	~	0 E	4	9		
	1997.049	1		i i					
2 Stream Water Quality Model	Open	Run	Run						
3 Greg Pelletier, Steve Chapra, and Hua Tao	File	VBA	Fortra	n					
4 Department of Ecology and Tufts University									
6									
6									
7 System ID:			11	î					
8 River name	Bouldes	Creek (Colorado,	USA)						
9 Saved file name		BC_1987-	-08-21						
10 Directory where the input/output files are saved									
11 Month			8						
12 Day			21						
13 Year			1987						
14 Local standard time zone relative to UTC			-7 hour	8					
15 Daylight savings time			Yes						
16 Simulation and output options:									
17 Calculation step			11.25 minu	es					
16 Number of days for the simulation period		The second second	5 days						
19 Simulation mode		Repeatin							
20 Selected date for output of longitudinal and 24-hr diel plots			L/1987 Euler						
21 Solution method (integration) 22 Solution method (pH)			Brent						
22 Solution method (ph) 23 Simulate hyporheic transient storage zone (HTS)			evel 1	_					
24 Simulate surface transient storage zone (STS)			Yes						
25 Option for conduction to deep sediments in heat budget		1.0	mped						
26 Display dynamic diel output for selected date			Yes						
27 State variables for simulation			All						
28 Simulate sediment diagenesis		Op	tion 1						
29 Simulate alkalinity change due to nutrient change			Yes						
30 Write dynamic output of water quality for entire simulation		Text files and s	the second s						
31 Print interval for dynamic output (multiple of time steps)			4						
32 Program determined calc step			11.25 minu	08					
33 Time elapsed during last model run			0.71 minu	les .					
34			- DOM NOT						
QUALIZE Heatbalter Beach Bales Initial Conditions Air Temperatur	e Dew Point Temperature	Wind Speed. Chuil C	Cowy Shade	Schar Uig	tand Heat Point 5	curves Diffuse Si	unes Califina	IOUS SHARE	CIW 0
		Andrea - Auge out		a sea that a		and the second second	and the second second	1.121	H = H - + H

Ecology's modeling tools for TMDLs webpage hyperlink


QUAL2Kw example graphics

QUAL2Kw example graphics



TMDL modeling scenario results

Scenario	Condition	Maximum Stream Temperature (° C) (averaged across select reaches)						
Occitano	Condition	All Reaches	Headwaters to Reach 28 ^a	Reach 28 ^a to Outlet				
Typical Low Flow Conditions (7Q2 flows; 50th percentile air temperature)								
1	Current Conditions: 7Q2	19.00	18.44	19.66				
2	100-year System Potential except where developed: 7Q2	16.99	16.22	17.55				
Critical Low Flow Conditions (7Q10 flows; 90th percentile air temperature)								
3	Current Conditions: 7Q10	21.00	20.11	21.88				
4	Current Conditions with cooler tributaries: 7Q10	20.77	19.66	21.66				
5	100-year System Potential except where developed: 7Q10	18.77 17.88		19.66				
6	100-year System Potential everywhere: 7Q10	18.77	19.66					

^a From the headwaters to 27.5 km downstream, the water quality criteria during the modeling period is 12 °C. Downstream of this section, the water quality criteria is 16 °C during the modeling period.

Longitudinal Distance from Upstream (km)

Climate Change Pilot Study

- Vulnerability analysis
- Qualitative and Quantitative
- Integrates 3 environmental management programs

ESA, Salmon Recovery Planning

Climate Science, USGCRP CWA, 303(d) TMDL

SPANOON-11/201 | September 2012 | www.spa.gov

EPA Region 10 Climate Change and TMDL Pilot – South Fork Nooksack River, Washington

Final Project Report

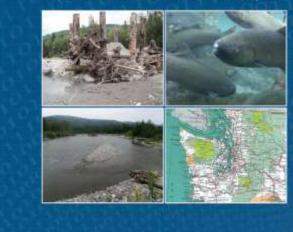
Quantitative Assessment of Temperature Sensitivity of the South Fork Nooksack River under Future Climatos using QUAL2Kw

EPA ____

Qualitative Assessment: Evaluating the Impacts of Climate Change on Endangered Species Act Recovery Actions for The South Fork Nookaack River, W

Climate and Species Recovery: Qualitative

- Salmon habitat restoration
- Updates Salmonid Recovery Plan
- Informs TMDL implementation
- Goes beyond SPV
- Assessed per:
 - Species
 - Restoration Action



SEPA

EPARODID-16/133 | Brieder 2010 | www.spage

Qualitative Assessment: Evaluating the Impacts of Climate Change on Endangered Species Act Recovery Actions for the South Fork Nooksack River, WA

Photos: Roger Tabor/USFWS

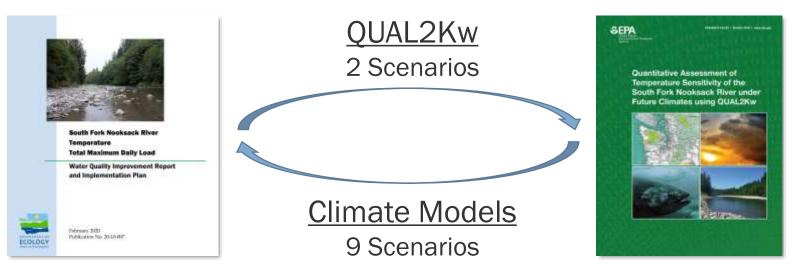
Stream restoration effect and priority

		Ameliorates Climate Change Effects?				Priority of Action (by Reach)					
Category Analogous South Fork Technique	Ameliorates Temperature Increase	Ameliorates Base Flow Decrease	Ameliorates Peak Flow Increase	Ameliorates Sediment Increase ¹	Increases Salmon Resilience	1	2	3	4	5	
Longitudinal connectivity (barrier removal)	Improve passage at natural barriers	0	0	0	0	•	N/A	N/A	Mod	Mod	N/A
Floodplain reconnection	Hydromodification removal/setback	•	0	•	•	•	High	Low	Low	Low	Low
	Log jams to reconnect floodplains	٠	•	•	•	0	High	Low	Mod	Low	Low
Stream flow regimes	Reduce water withdrawals	•	•	0	0	0	High	Low	N/A	N/A	N/A
	Restore floodplain wetlands	•	٠			0	High	Low	Mod	Low	Low
Erosion and dediment delivery	Reduce stream- adjacent sediment inputs (wood placement to reduce toe erosion)	0	0	0	0	0	Low	Low	Low	Low	Low
Riparian functions	Planting (trees, other vegetation)	٠	0	0	0	0	High	High	High	High	High
	Thinning or removal of understory	0	0	0	0	0	High	High	High	High	High
	Remove non-native plants	•	•	0	0	0	High	High	High	High	High
Instream rehabilitation	Placement of log jams, other wood		0	0	0	0	High	Low	High	Low	Low

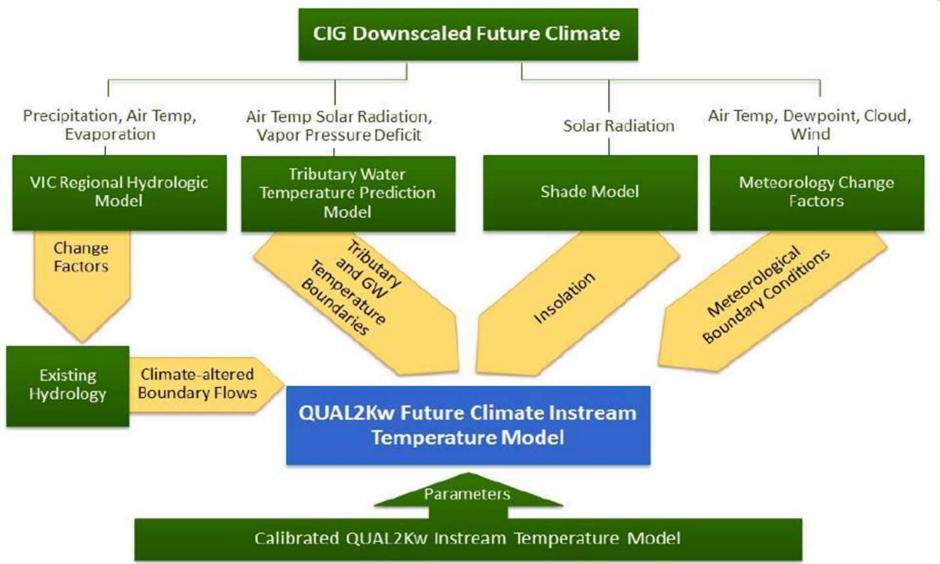
¹ Beechie et al. (2013) did not evaluate potential for actions to ameliorate increases in sediment. Call is based on best professional judgment.

² Instream restoration can ameliorate temperature increase by creating temperature refuges, increasing hyporheic exchange by encouraging bedform diversity, and narrowing active channel and increasing effective shade.

Abilit	y to Ameliorate Climate Change Effects	Action Priority		
•	Positive effect	Low		
0	No effect	Moderate (Mod)		
•	Context-dependent	High		


TMDL & Climate Change Marriage: Quantitative

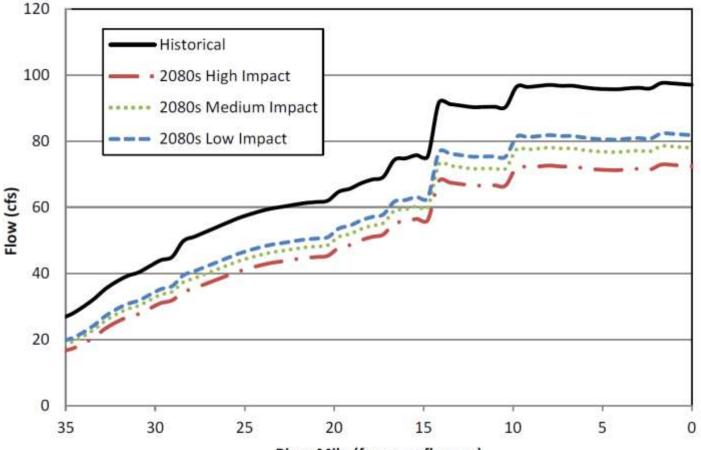
Shade—QUAL2Kw models for TMDL


Boundary condition adjustments from downscaled GCM - (1) SPV, (2) no veg

- Climate models:
 - (1) Low, Medium, High (2) 2020s, 2040s, 2080s

Scenario	GCM	General Trends				
Low Impact	CGCM3.1-t47 (Third Generation Coupled Global Climate Model)	Low warming, increased precipitation				
Medium Impact	CCSM3 (Community Climate System Model)	Average warming, decreased summer precipitation				
High Impact	HADGEM1 (Hadley Centre Global Environmental Model)	High warming, decreased precipitation				

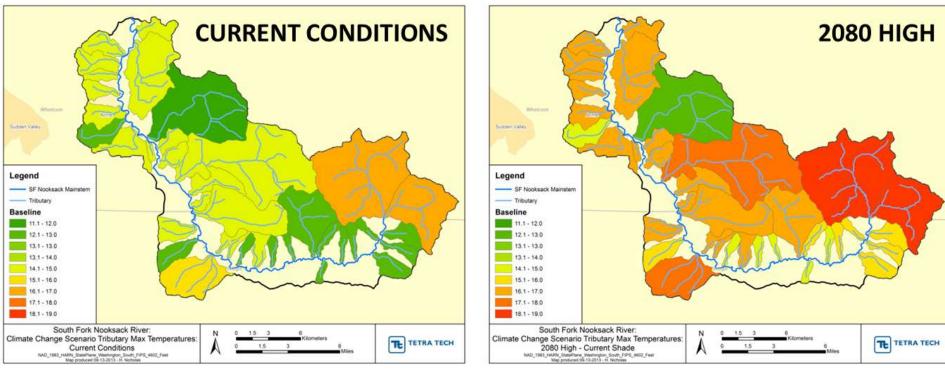
Schematic of model and climate data integration

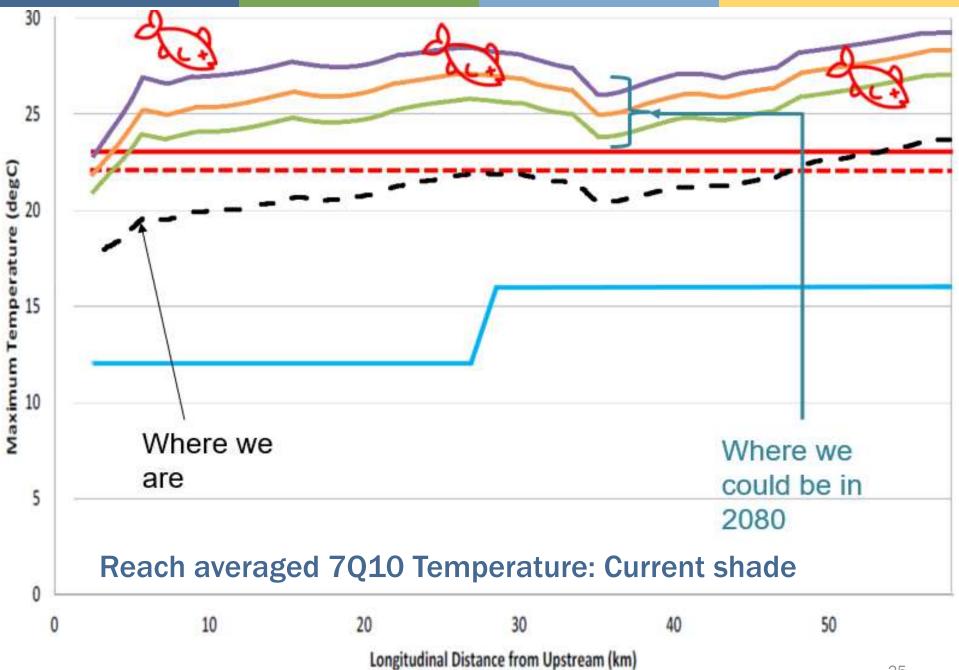


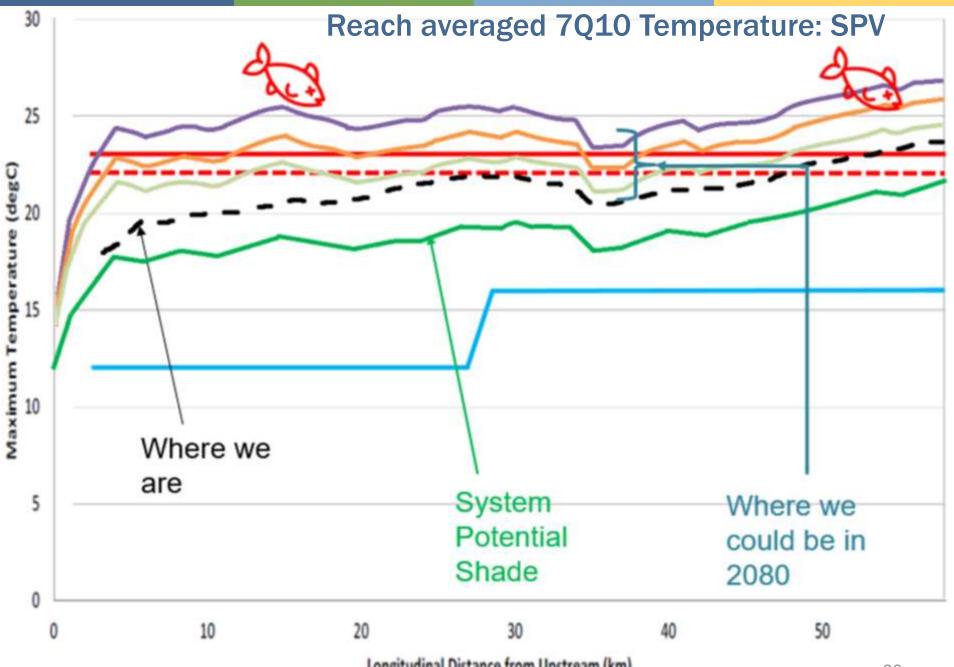
Climate altered boundary conditions

Tributary, headwater, and groundwater flow

- VIC hydrology model used to modify current 7Q10 flows
- Larger relative changes in flow are estimated at higher elevations

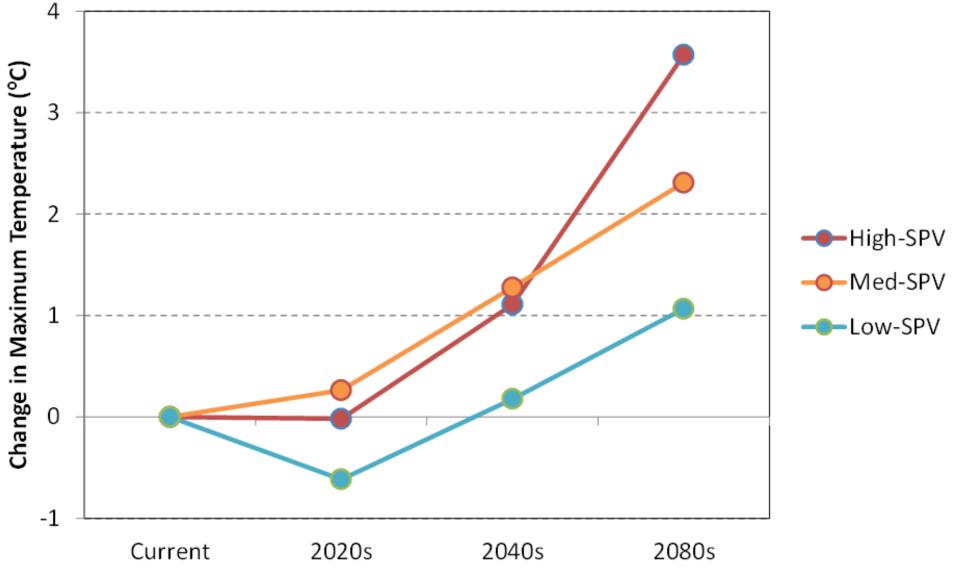



Climate altered boundary conditions

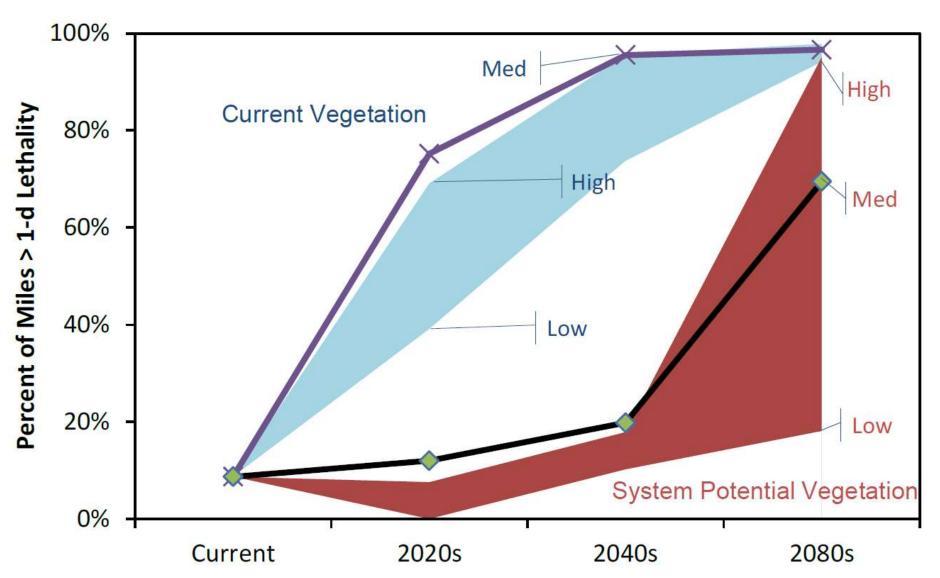


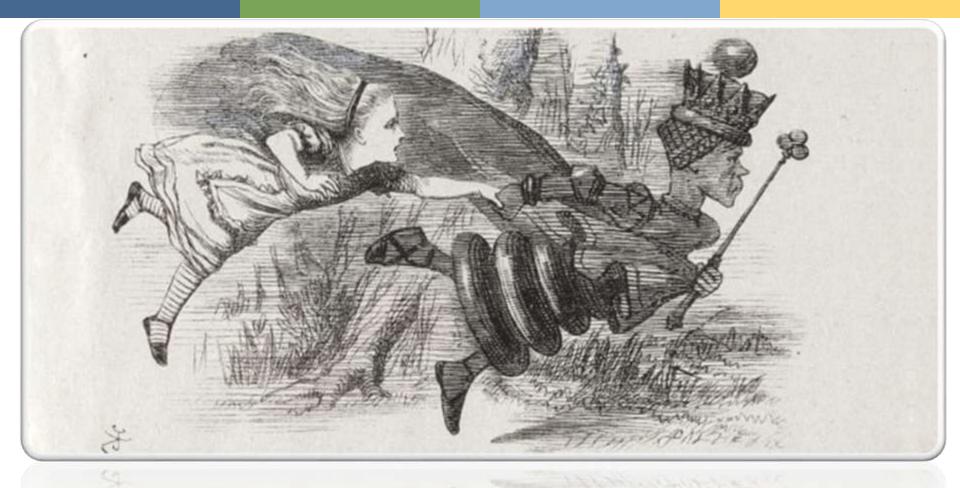
Tributary and headwater water temperature

- Estimated from landscape and climate variables using a non-linear combined regression method
- Variables: solar radiation, average air temperature, vapor density deficit, day of year, elevation, drainage area, and fraction forested


Longitudinal Distance from Upstream (km)

30 **Reach averaged 7Q10 Temperature: Better than Natural Conditions** 25 Maximum Temperature (degC) 01 07 07 07 15 Where we are Medium 5 All sensitivity to Prediction Natural for 2080 Conditions 0 10 20 30 40 50


Longitudinal Distance from Upstream (km)


Reach averaged 7Q10 Temperature

Climate change impacts: % of RM > 23 °C

"Now, here, you see, it takes all the running you can do, to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!"

- Red Queen Through the Looking Glass by L. Carroll

Restorative Implementation

- Incorporate the Climate Change Pilot study recommendations
- System potential shade will improve resiliency, but is insufficient to mitigate climate change effects after 2020
- Disconnect between modeled reach averaged conditions vs. where salmon hang out → need to protect retain/enhance thermal refugia
- Should we be thinking about time horizons for when TMDL allocations need to be achieved given the climate change effect?
- Importance of other non-shade restoration actions/adaptation strategies and need to prioritize timing of implementation actions to ameliorate climate change impacts
- TMDL implementation is only one part of a broader effort to attain clean water to support beneficial uses

Restoration: Beyond Riparian Shading

- Promote river longitudinal connectivity
- Improve floodplain reconnection
- Restore streamflow regimes
- Reduce erosion and sediment delivery to the river
- Restore watershed function and process
- Continue to implement instream restoration and rehabilitation
- Develop and implement planning activities for the watershed
- Monitoring of restoration actions and adaptive management

Local Support and Engagement

SOUTH FORK NOOKSACK RIVER COMMUNITY WATERSHED PROJECT

Thank you

Photo: Nooksack Tribe

James Kardouni james.kardouni@ecy.wa.gov