LEGAL PATHWAYS TO DEEP DECARBONIZATION IN THE UNITED STATES

Edited by Michael B. Gerrard John C. Dernbach

ENVIRONMENTAL LAW INSTITUTE

Washington, D.C.

Copyright © 2019 Environmental Law Institute 1730 M Street NW, Suite 700, Washington, DC 20036

All rights reserved. No part of this work may be reproduced or transmitted in any form by any means, electronic or mechanical, including photocopying and recording, or by any information storage or retrieval system, without permission in writing from the copyright holder.

ISBN 978-1-58576-197-5

Summary of Contents

Contents	v
Editors	xxxviii
Contributing Authors	xxxix
Acknowledgments	li
List of Acronyms	lii

Introduction, by John C. Dernbach......1

Part I — Context

Chapter 1 — Technical and Economic	Feasibility of Deep Decarbonizati	on in the United States,
by James H. Williams, David	Ismay, Ryan A. Jones, Gabe Kw	ok, and Ben Haley21

PART II — CROSS-CUTTING APPROACHES TO REDUCING EMISSIONS

Chapter 2 — Carbon Pricing, by Shi-Ling Hsu	.70
Chapter 3 — Behavior, by Michael P. Vandenbergh and Paul C. Stern	. 87
Chapter 4 — Technological Innovation, by Gary E. Marchant	111
Chapter 5 — <i>Financing Large-Scale Projects</i> , by Robert Freedman, Monica Lamb, and Claire Melvin	129
Chapter 6 — Financing at the Grid Edge, by C. Baird Brown	148
Chapter 7 — Materials Consumption and Solid Waste, by Michael Burger	183
Chapter 8 — International Trade, by Elizabeth Trujillo	197

PART III - ENERGY EFFICIENCY, CONSERVATION, AND FUEL SWITCHING IN BUILDINGS AND INDUSTRY

Chapter 9 — Lighting, Appliances, and Other Equipment, by Kit Kennedy	217
Chapter 10 — New Buildings, by Lee Paddock and Caitlin McCoy	256
Chapter 11 — Existing Buildings, by James Charles Smith	277
Chapter 12 — Industrial Sector, by Gregg P. Macey	301

PART IV - ENERGY EFFICIENCY, CONSERVATION, AND FUEL SWITCHING IN TRANSPORTATION

Chapter 13 — Transforming Transportation Demand, by Trip Pollard	. 328
Chapter 14 — Light-Duty Vehicles, by Amy L. Stein and Joshua P. Fershée	. 353
Chapter 15 — Heavy-Duty Vehicles and Freight, by Andrea Hudson Campbell, Avi B. Zevin,	
and Keturah A. Brown	. 384

Chapter	16 - Aviation,	by Aoife	O'Leary	424
Chapter	17 — Shipping,	by Aoife	O'Leary	444

PART V — ELECTRICITY DECARBONIZATION

Chapter 18 — Utility-Scale Renewable Generating Capacity, by Michael B. Gerrard	463
Chapter 19 — Distributed Renewable Energy, by K.K. DuVivier	489
Chapter 20 — Transmission, Distribution, and Storage: Grid Integration, by Alexandra B. Klass	527
Chapter 21 — Nuclear Energy, by David A. Repka and Tyson R. Smith	547
Chapter 22 — Hydropower, by Charles R. Sensiba, Michael A. Swiger, and Sharon L. White	571
Chapter 23 — Electricity Charges, Mandates, and Subsidies, by Jim Rossi	598
Chapter 24 — Phasing Out the Use of Fossil Fuels for the Generation of Electricity, by Steven Weissman and Réna Kakon (with appendices by Stephen Herzenberg and Michael B. Gerrard)	ı 619

PART VI — FUEL DECARBONIZATION

Chapter 25 — Bioenergy Feedstocks, by Blake Hudson and Uma Outka	648
Chapter 26 — Production and Delivery of Low-Carbon Gaseous Fuels, by Romany M. Webb	
and Melinda E. Taylor	
Chapter 27 — Production and Delivery of Biofuels, by James M. Van Nostrand	692

PART VII — CARBON CAPTURE AND NEGATIVE EMISSIONS

Chapter 28 - Carbon Capture and Sequestration, by Wendy B. Jacobs and Michael T. Craig	. 713
Chapter 29 — Negative Emissions Technologies and Direct Air Capture, by Tracy Hester	. 749
Chapter 30 — Agriculture, by Peter H. Lehner and Nathan A. Rosenberg	772
Chapter 31 — Forestry, by Federico Cheever with Robert B. McKinstry Jr.	
and Robert L. Fischman	. 823

PART VIII — NON-CARBON DIOXIDE CLIMATE POLLUTANTS

Chapter 32 — <i>Black Carbon</i> , by Melissa Powers	846
Chapter 33 — Methane and Climate Change, by Steven Ferrey with Romany M. Webb	879
Chapter 34 — <i>Fluorinated Gases</i> , by Nathan Borgford-Parnell, Stephen Oliver Andersen, and Durwood Zaelke	902
Chapter 35 — <i>Nitrous Oxide</i> , by Jessica Wentz and David Kanter9	916
Index of Recommendations Organized by Actor	940
Index	041

Contents

Editors	xxxviii
Contributing Authors	xxxvix
Acknowledgments	li
List of Acronyms	lii

Introdu	action, by John C. Dernbach	1
I.	The Paris Agreement and the Urgency of Climate Change	2
II.	U.S. Technical and Policy Pathways to Deep Decarbonization	7
III.	Why Deep Decarbonization Is in America's Interest	12
	A. Public Health and Welfare	12
	1. Public Health Risks of Climate Change	13
	2. Public Health Benefits of Reducing GHG Emissions	14
	3. Economic Opportunities and Economic/Property Risks	14
	B. National Security	15
	C. Food Security	16
	D. American Values	16
IV.	The Importance of Identifying U.S. Legal Pathways to Deep Decarbonization	17
V.	Plan of This Book	18

Part I — Context

Chapte	r 1 — Technical and Economic Feasibility of Deep Decarbonization in the United States,	
	by James H. Williams, David Ismay, Ryan A. Jones, Gabe Kwok, and Ben Haley	21
I.	Introduction	21
II.	Background	22
III.	Objectives	23
IV.	Methods	24
V.	Decarbonization Strategies	26
VI.	Scenarios	26
VII.	Main Findings	28
VIII	. Key Benchmarks	30
IX.	Sectoral Transitions	30
Х.	Mitigation of Non-Energy and Non-CO ₂ GHGs	33

XI. Policy Challenges	
XII. Improving Policymaking	
XIII. Conclusion	
Appendix A. Figures	
Appendix B. Tables	65

PART II — CROSS-CUTTING APPROACHES TO REDUCING EMISSIONS

Chapte	er 2 — Carbon Pricing, by Shi-Ling Hsu70
Ι.	Introduction
II.	Carbon Pricing
	A. Where in the World Is Carbon Priced?73
	1. Cap-and-Trade Programs73
	2. Carbon Taxation75
	B. Emissions Reductions From Carbon Pricing76
III.	Legal Issues
	A. Executive Action Issues
	B. Carbon Taxation Issues
	C. Cap-and-Trade Issues
	D. Trade Protection Issues
IV.	A Carbon Tax Option
	A. Level of Taxation
	B. Point of Taxation
	C. Revenue Options
	1. Economic Efficiency
	2. Wealth Redistribution
	3. Climate Policy Spending
	4. Revenue Options Generally
	D. The Effect of a Carbon Tax Option
V.	Conclusion
Chapte	er 3 — Behavior, by Michael P. Vandenbergh and Paul C. Stern
I.	Introduction
II.	The Core Elements of the DDPP
III.	The Framing Challenge91
	A. Framing the Sources of Demand
	B. Framing the Energy Terminology92

	A. Behavior in the DDPP Efficiency Assumptions	93
	B. Behavior in the Four DDPP Pathways	96
V.	Laws, Policies, and Programs to Promote Behavior Change	97
	A. The Plausibility of Behavior Change Initiatives for Climate Mitigation	
	B. Specific Laws, Policies, and Programs to Achieve Deep Decarbonization	
	C. Design Principles for Changing Behavior	
	D. Household Equipment	
	1. Technology Uptake	
	2. Technology Use	
	3. Design Principles	103
	E. Buildings	103
	F. Motor Vehicles	
	G. Ways Forward	
VI.	Beyond the DDPP Analysis	
	A. Reducing Demand for Energy Services	
	B. Enabling Lifestyle Transitions That Lower Emissions	
VII.	. Conclusion	
Chapte	er 4 — <i>Technological Innovation</i> , by Gary E. Marchant	
I.	Introduction	111
II.	Technological Innovation Is Essential for Deep Decarbonization	
III.	The Case for Legal Intervention	114
IV.	Legal Intervention Tool Box for Deep Carbonization	115
	A. Regulatory Standards for Carbon Reduction	115
	B. Expedited or Relaxed Approval Pathways for Decarbonization Technologies	116
	C. Carbon Taxes	116
	D. Tradable Permits	117
	E. Technology Mandates	117
	F. Government Procurement	118
	G. R&D Funding	118
	H. Subsidies	119
	I. Incentive Programs	119
	J. Intellectual Property	119
	K. Competitions/Prizes	
	L. Land Use	
	M. Private Governance/Soft Law Approaches	
V.	Key Challenges	

	A. Costs and Feasibility	
	B. Timing	
	C. Fairness	
	D. Incremental Versus Radical Change.	
	E. Technological Uncertainty	
	F. Coordination and Complementary	Technologies 124
	G. Picking Winners and Losers	
	H. Unintended Consequences	
	I. Reflexivity	
	J. Jurisdictional Coordination	
	K. Work Force	
VI.	Conclusion	
Chapt	ter 5 — <i>Financing Large-Scale Projects</i> , by	Robert Freedman, Monica Lamb,
	and Claire Melvin	
I.	Introduction	
II.	Challenges in Financing Carbon-Reduct	ng Assets
	A. High Up-Front Capital Costs	
	B. Technology Risk	
	C. Variability of Renewable Energy Ge	neration
	D. Inefficiency of Tax Incentives for Po	ower Plant Development
	E. Physical Constraints on Ownership	of Behind-the-Meter Renewable Electricity Generation 134
	F. Long Development Time Lines for	Renewable Power Plants
	G. Inadequate Transmission Infrastruct	ıre
III.	Legal Pathways	
	A. Pathways to Enabling Greater Up-F Available Capital	ront Capital Investments and Increasing the Amount of
	1. PTC	
	2. ITC	
	3. State Tax Credits, Exemptions,	and Deductions
	4. Direct Loan, Grant, and Rebate	Programs
	5. Green Banks	
	6. Green Bonds	
	7. Tax-Advantaged Structures	
	8. Mandates Driving Decarbonizat	on Investment
	B. Pathways to Addressing Technology	Risk
	C. Pathways Addressing the Variability	of Renewable Energy Generation

	E. Pathways to Addressing the Constraints on Behind-the-Meter Renewable Power Generation	146
	F. Pathways to Streamline the Permitting and Siting Processes	146
	G. Pathways to Developing Transmission Infrastructure	146
IV.	Conclusion	147
Chapt	er 6 — Financing at the Grid Edge, by C. Baird Brown	148
I.	Introduction	148
II.	The Case for Action at the Edge	149
	A. The Energy Revolution at the Grid Edge	150
	B. Where the Grid Meets the Edge	151
	C. Decarbonization Investment Today	152
	D. Credit Quality	153
	1. Capacity and Compliance	153
	2. Financial Sustainability	153
	3. Collateral	154
	E. Legal Action on Grid-Edge Finance	155
III.	The Legal Authority to Generate, Distribute, and Sell Energy	155
	A. The Utility Regulation Hurdle	155
	B. Statutory Exceptions and Workarounds	156
	C. Other Forms of Entities	157
	1. Cooperative and Municipal Utilities	157
	2. Thermal Utilities	157
	3. Customer Aggregations	158
	D. Recommendation: New Grid-Edge Regulatory Models	159
	1. Local Generation and Distribution Projects	159
	2. Combined Virtual Metering	159
	3. Carbon Conditions	159
	4. Federal Policy Directives to States	160
IV.	Services From and to the Grid Edge	160
	A. Sales to RTOs	160
	1. Current RTO Markets	160
	2. Recommendation: Improved Market Participation Models	161
	B. Services for and From Distribution Companies	161
	1. Utility Purchase Programs Are Rare	161
	2. Recommendation: Getting the Tariffs Right	163
	3. Recommendation: Utility-Private Partnerships	164
	4. Recommendation: Support the Utility of the Future	165

C.	Recommendation: Subsidies Should Not Interfere With Markets	166
Gri	id-Edge Finance	168
A.	New Building Efficiency	168
	1. Legal Performance Requirements	168
	2. Private Requirements	169
	3. Lending Market Process	169
	4. Tax-Exempt Bonds	
	5. Recommendation: Change Construction and Lending Industry Culture	
B.	Energy-Efficiency Retrofits	
	1. Guaranteed Energy Savings Contracting	
	2. Financing Retrofits	
	3. Other Financing Approaches	
	4. Recommendation: Help Retrofit Markets Grow	
C.	Generation, Storage, and Private Activity Bonds	
	1. Customer Ownership	
	2. Third-Party Ownership	
	3. Private Activity Bonds	175
D.	Pooled Financing and Securitization	175
	1. Securitization	
	2. Pooled Bonds	
	3. Recommendation: A Federal Alternative	
E.	Information, Credit, and Carbon	176
	1. Recommendation: Availability of Utility Customer Information	
	2. Recommendation: Utility Grid Mapping	
	3. Recommendation: Performance of Energy Projects and Energy Borrowers	177
	4. Recommendation: Green Investments	
F.	Performance Contracting	
	1. Importance	
	2. Recommendations	179
G.	Green Banks and Sustainable Energy Utilities	179
	1. Growing Role	179
	2. Recommendations	
Н.	Recommendation: Help Bring Low-Income Energy Users Into the Market	
Ene	ergy Rights	
A.	Energy Justice	
B.	An Energy Bill of Rights	
Со	nclusion	
	C. Gr A. B. C. D. E. F. G. H. En A. B. Co	 C. Recommendation: Subsidies Should Not Interfere With Markets

Chapte	er 7 — Materials Consumption and Solid Waste, by Michael Burger	
I.	Introduction	
II.	Characterization of the Circular Economy and Its Climate Benefits	
	A. A Brief History of the Circular Economy	
	B. The Effect of the Circular Economy on GHG Emissions	
III.	Legal Techniques for a Circular Economy	
	A. Regulatory Interventions	
	1. Existing Approaches: Foreign Country Legislation	
	2. State and Local Laws in the United States	
	B. Research and Development: Materials Innovation	
	C. Corporate Governance	
IV.	Legal Pathways to a Circular Economy in the United States	
	A. Regulatory Interventions at the Federal, State, and/or Local Level	
	B. Research and Development	
	C. Corporate Governance	
	D. Managing Environmental Risks of Specific Materials	
V.	Conclusion	
Chapte	er 8 — International Trade, by Elizabeth Trujillo	
I.	Introduction	
II.	Policy Tools to Promote Deep Decarbonization	
	A. FITs	
	B. LCRs	
	C. Tax Schemes and BTAs	
	D. Subsidies	
	E. Eco-Labeling	
III.	A Primer on International Trade Law and Deep Decarbonization	
	A. Discrimination in GATT: Articles I and III	
	B. Exceptions to GATT: Article XX	
	C. The SCM Agreement	
	D. The TBT Agreement	
IV.	Trade Law and Decarbonization Policy Conflicts	
	A. LCRs	
	1. WTO Case Law	
	2. Recommendations Concerning LCRs	
	B. Border Tax Adjustments	
	1. BTAs and GATT Article I	

		2. BTAs Under GATT Article III	207
		3. BTAs and GATT Article XX	207
		4. BTAs and the SCM	208
		5. Recommendations for BTAs	208
	С.	FITs	209
		1. Relevant WTO Case Law	209
		2. Recommendations for FITs	210
	D	Eco-Labeling	210
		1. Use of Eco-Labeling for Decarbonization	210
		2. Recommendations for Eco-Labeling	211
V.	Dee	p Decarbonization in Preferential Trade Agreements	211
	Α.	NAFTA	212
	B. ′	The TPP	213
	С. ′	The CETA	214
	D. 1	Recommendations	214
		1. Recommendations for NAFTA Renegotiations	214
		2. Recommendations for Other Preferential Trade Agreements	215
VI.	Conc	lusion	215

Part III — Energy Efficiency, Conservation, and Fuel Switching in Buildings and Industry

Chapte	r 9	- Lighting, Appliances, and Other Equipment, by Kit Kennedy	217
I.	Int	roduction	217
II.	Fed	leral Energy-Efficiency Standards: Regulatory Framework	220
	А.	History of the Federal Energy-Efficiency Standards Program	220
	В.	Current Status: Trump Administration	222
	C.	The DOE Energy-Efficiency Standards Rulemaking Process	224
	D.	Carbon Benefits and Co-Benefits of Federal Energy-Efficiency Standards	226
	E.	Benefits of Energy-Efficiency Standards for Low-Income Consumers	226
	F.	Federal Preemption and State Energy-Efficiency Standards	227
		1. State Efficiency Standards for Products That Are Not Federally Regulated	227
		2. Exemptions From EPCA's Federal Preemption Provisions	228
III.	Leg	al Pathways for Scaling Up Appliance and Product Energy Efficiency	230
	А.	Energy-Efficiency Legal Pathways: Federal Government	231
		1. Overarching and Complementary Federal Energy-Efficiency Legal Pathways	231
		2. Federal Energy-Efficiency Appliance and Equipment Standards: Legislative and Regulatory Pathways	233
		3. Policies to Accelerate Turnover and Penetration of Energy-Efficient Appliances	239
	B.	Energy-Efficiency Legal Pathways: States	240

 State Energy-Efficiency Appliance and Equipment Standards Legal Pathways C. Energy-Efficiency Legal Pathways: Cities and Localities D. Energy-Efficiency Legal Pathways: Industry, Businesses, and Utilities 1. Embrace Sustainability 2. Embrace Energy-Efficiency Private Governance Standards IV. Legal Pathways for Increasing Energy Efficiency in Lighting, Consumer Electronics, Computers, and Data Centers, and in the Industrial and Commercial Sectors A. Lighting Efficiency I. Federal Lighting Efficiency Legislation and Regulation 	 243 245 245 246 246 246 247 249
 C. Energy-Efficiency Legal Pathways: Cities and Localities D. Energy-Efficiency Legal Pathways: Industry, Businesses, and Utilities 1. Embrace Sustainability 2. Embrace Energy-Efficiency Private Governance Standards IV. Legal Pathways for Increasing Energy Efficiency in Lighting, Consumer Electronics, Computers, and Data Centers, and in the Industrial and Commercial Sectors A. Lighting Efficiency 1. Federal Lighting Efficiency Legislation and Regulation	 245 245 246 246 246 247 249
 D. Energy-Efficiency Legal Pathways: Industry, Businesses, and Utilities	 245 245 246 246 246 247 249
 Embrace Sustainability	 245 246 246 246 247 249
 Embrace Energy-Efficiency Private Governance Standards IV. Legal Pathways for Increasing Energy Efficiency in Lighting, Consumer Electronics, Computers, and Data Centers, and in the Industrial and Commercial Sectors A. Lighting Efficiency 1. Federal Lighting Efficiency Legislation and Regulation	246 246 246 247 249
 IV. Legal Pathways for Increasing Energy Efficiency in Lighting, Consumer Electronics, Computers, and Data Centers, and in the Industrial and Commercial Sectors	246 246 247 249
and Data Centers, and in the Industrial and Commercial Sectors A. Lighting Efficiency 1. Federal Lighting Efficiency Legislation and Regulation 2. Federal Lighting RD&D	246246247249
 A. Lighting Efficiency 1. Federal Lighting Efficiency Legislation and Regulation 2. Federal Lighting RD&D 	246 247 249
 Federal Lighting Efficiency Legislation and Regulation Federal Lighting RD&D 	247 249
2. Federal Lighting RD&D	249
3. Federal Voluntary and Labeling Programs	250
4. Model and State Building Codes	250
5. State Lighting Efficiency Legislation and Programs	250
6. State and Federal Lighting Incentive Programs	251
B. Computer and Data Center Energy Efficiency	251
1. Computer Efficiency	251
2. Data Center and Computer Server Efficiency	252
C. Industrial and Commercial Efficiency	253
1. Potential for Industrial Energy Efficiency	253
2. Barriers to Industrial Energy Efficiency	254
3. Approaches to Improving Industrial Energy Efficiency	254
V. Conclusion	255
Chapter 10 — New Buildings, by Lee Paddock and Caitlin McCoy	256
I. Introduction	256
II. Background	256
III. Pathways to Deep Decarbonization in the United States	258
IV. Green Building Approaches	259
A. LEED and Energy Star for Buildings	259
B. ZEBs	260
V. Energy-Efficiency Technologies for Deep Decarbonization of New Buildings	262
VI. U.S. Approaches to Improve the Energy Performance of New Buildings	263
A. Federal Approaches to Improving Energy Performance in New Buildings	263
B. State and Local Approaches to Improving Energy Performance in New Buildings	265
VII. EU Approaches to Improve the Energy Performance of Buildings	268
A. Implementation of the EPBD and Building Policies in the Netherlands	270
B. Implementation of the EPBD and Building Policies in Sweden	271

VII	I. Recommendations	
	A. Federal Government	
	B. State Governments	
	C. Local Governments	
	D. Private Initiatives	
IX.	Conclusion	
Chapte	er 11 — <i>Existing Buildings</i> , by James Charles Smith	
I.	Introduction	
II.	Existing Buildings and GHG Emissions	
	A. Contribution of Buildings to Overall GHG Emissions	
	B. The DDPP	
	C. Other Measures and Benefits	
III.	Legal Pathways for Deep Decarbonization: Energy Audit Programs	
	A. The Value of Energy Audits	
	B. Voluntary Programs	
	C. Mandatory Programs	
	1. New York City Benchmarking Plan	
	2. California Building Energy Consumption Records	
	D. Disclosure Requirements at Time of Sale or Rental	
	1. Residential Buildings—Austin, Texas, Energy Conservation Audit and Disclosure	
	2. United Kingdom Energy Performance Certificate	
	E. Recommendations	
IV.	Legal Pathways for Deep Decarbonization: Mandatory Retrofit Laws	
	A. San Francisco-Residential Energy Conservation Ordinance	
	B. United Kingdom EPC—Rental Properties	
	C. Recommendations	
V.	Legal Pathways for Deep Decarbonization: Government Buildings	
	A. Federal Government	
	1. Legislation	
	2. Executive Branch	
	3. GSA Sustainability Plan FY 2011-2016	
	B. State and Local Governments	
	C. Recommendations	
VI.	Legal Pathways for Deep Decarbonization: Voluntary Certification Systems	
	A. The Development of Green Building Certifications	
	B. Recommendations	

VII.	. Legal Pathways for Deep Decarbonization: Fuel Switching	294
	A. Switching From Fossil Fuels to Electricity	294
	B. Other Fuels	295
	C. Recommendations	296
VII	I. Legal Pathways for Deep Decarbonization: Financing Mechanisms	297
	A. EEMs	297
	B. Rehabilitation Mortgages	298
	C. PACE Programs	298
	D. Recommendations	299
IX.	Conclusion on How to Reach 80% Reduction	300
Chapte	er 12 <u>Industrial Sector</u> by Gregg P. Macey	301
Т	Introduction	301
I. II	Industrial Sector Carbon Emissions	303
11.	A Industry Role in Raising and Stabilizing World Temperatures	303
	B. Industrial Carbon Emissions by Subsector	305
	1 Refining and Chemicals	305
	2 Pulp and Paper	306
	3 Food Processing	307
	4 Iron and Steel and Other Primary Metals	307
	5 Cement and Lime Production	308
	6 Other Sectors	308
III	Legal Pathways to Energy and Emissions Efficiency	308
111.	A Carbon Pricing	309
	B Ad Hoc and Comprehensive Regulatory Backstops	311
	1. Sectoral Approach	311
	2. A More Comprehensive Carbon Price	317
	C. Subsidy and Private-Law Solutions	
	D. Further Pathways: Material Efficiency and Carbon Management	
IV.	Equity and Employment	
V	Conclusion	326
••	Conversion	

PART IV — ENERGY EFFICIENCY, CONSERVATION, AND FUEL SWITCHING IN TRANSPORTATION

Chapte	er 13 — Transforming Transportation Demand, by Trip Pollard	328
Ι.	Introduction	328
II.	The Challenge: What Needs to Be Achieved by 2050	329
	A. Transportation: The Largest Source of GHG Pollution	329

Page	xvi
------	-----

	B. Potential to Curb Emissions by Shifting Transportation Demand	
	1. DDPP Analysis	
	2. Analyses Addressing Transportation Demand	
III.	Solutions: Legal and Policy Options for Moving Forward	
	A. Reorient Transportation Planning	
	B. Reduce Driving While Still Using Motor Vehicles	
	1. Maximize Road System Efficiency	
	2. Reduce Subsidies and Improve Price Signals	
	3. Flexible Vehicle Trips	
	4. Shared Mobility	
	5. Autonomous Vehicles	
	C. Provide and Promote Alternatives to Driving	
	1. Funding, Pricing, and Incentives	
	2. Increasing Efficiency and Effectiveness	
	3. Designing and Retrofitting Streets	
	D. Link Transportation and Land Use	
IV.	Moving Forward	
	A. Complementary Efforts and Cumulative Effects	
	B. Maximizing Co-Benefits	
V.	Conclusion: Building on Momentum for Change	
		252
Chapt	ter 14 — Light-Duty Vehicles, by Amy L. Stein and Joshua P. Fershee	
Ι.	Introduction	
II.	The Role of LDVs in Decarbonization	
	A. LDV Primer	
	1. ICEs	
	2. EVs, Hybrids, and Plug-In Hybrids	
	3. Hydrogen	
	B. LDVs and GHG Emissions	
III.	Existing Legal Pathways to Achieve LDV Decarbonization	
	A. Fuel Economy Standards	
	B. Emissions Standards	
	C. Fiscal Incentives	
	D. Barriers to AFV Development	
	1. Cost	
	2. Actual and Perceived Infrastructure Deficiencies	
	3. The Alternative Vehicle Challenge: Public Perception and Preferences	

		4.	Misalignment Between Financial Motivations and AFV Deployment	. 366
IV.	De	velo	ping Legal Pathways to Achieve LDV Decarbonization	. 366
	А.	Pro	omoting a Reduced-Carbon LDV Fleet	. 367
		1.	Develop Infrastructure Pathways	. 367
		2.	Coordinate the Electric Grid With Transportation	. 371
		3.	Lower Costs	. 373
		4.	Tighten Fuel Economy and Emissions Standards	. 376
		5.	Integrate Autonomous Vehicles	. 377
		6.	Educate Consumers	. 378
	В.	Ree	ducing the ICV Fleet	. 379
		1.	Incentives	. 379
		2.	Bans	. 380
V.	Со	nclu	ision	. 383
Chapto	er 1 ⁴ and	5 — 1 Ke	<i>Heavy-Duty Vehicles and Freight</i> , by Andrea Hudson Campbell, Avi B. Zevin, eturah A. Brown	. 384
I.	Int	rodu	action	. 384
II.	Ov	ervi	ew of the HDV, Rail, and Freight Sectors	. 384
	A.	ΗI	DVs and Heavy-Duty Engines	. 385
	В.	Rai	il	. 386
	C.	HI	DV and Rail Emissions	. 387
III.	Re	duci	ng Per-Ton GHG Emissions From HDVs	. 389
	A.	Cu	rrent Efforts to Reduce GHG Emissions From HDVs	. 389
		1.	Overview of EPA and NHTSA Approaches to HDV Regulation	. 389
		2.	EPA and NHTSA Joint GHG and Fuel Efficiency Standards for HDVs and HDV Engines	. 390
	B.	Les	gal and Policy Options to Achieve Deep Decarbonization Objectives	. 393
		1.	Establishing Stringent, Technology-Forcing GHG and Fuel Economy Standards in Future MYs	. 393
		2.	Eliminate Statutory Constraints to Enable Aggressive GHG/Fuel Economy Standards	. 395
		3.	Clarify and Confirm Federal Authority to Regulate HD Trailers and Gliders	. 395
		4.	Accelerate the Turnover of Older, Less Fuel-Efficient HDVs	. 397
		5.	Develop Automated Vehicle Regulations That Can Achieve GHG Reductions	. 398
		6.	Federal Legislation for Autonomous Vehicles Must Reduce Obstacles to the Deployment of Automated HDVs	. 400
		7.	Tax and Other Economic Incentives Can Accelerate Deployment of More Efficient Vehicles and Engines	. 400
		8.	Utilize State SIP Process and HDV I/M Programs to Speed Deployment of More	

	9. Private- and Public-Sector Investment in Next-Generation HDVs and Necessary Infrastructure Will Reduce Fleet GHG Emissions	406
IV.	educing Emissions Per Ton From Rail	
	. EPA Should Grant California's Rulemaking Petition and Issue GHG Standards for New Locomotives Under Existing CAA Authority	w
	. Clean Air Act Amendments Could Accelerate the Turnover of Older, Less Fuel-Efficier Locomotives or Require Periodic Remanufacturing of In-Use Locomotives	nt 408
	Congress Should Expand and Continue Funding for EPA's SmartWay and Clean Diese Grants Programs	l 409
	 Congress Should Create Tax Credits for the Purchase and Deployment of New Advance Technology and Fuel-Efficient Locomotives 	ced 410
	. Congress Could Amend the CAA to Allow State and Local Authorities to Regulate Ne Locomotives	ew 410
	Individual States or Coalitions of States Should Adopt Requirements for In-Use Locon Operating Within State Borders	notives 411
V.	nabling and Encouraging Mode Shift From HDV to Rail	
	. Legal and Policy Options for Overcoming Obstacles and Creating Opportunities for Expanded Use of Rail	
	1. Invest in Infrastructure and Require Technologies That Reduce Congestion and Ch Points, Allow for Double-Stacking, and Enable Efficiency	oke 412
	2. Expand Investment in Rail Infrastructure to Reduce Advantages of HDV Over Rai	1 415
	3. Develop a More Distributed Rail System Instead of Consolidated Routes	
	. Legal and Policy Options for Expanding Use of Rail Infrastructure	
	1. The STB Should Accelerate Approval of New Rail Lines	
	2. The STB Could Revise Rate Regulation to Encourage Private Investment for Expa and Maintenance of Distributed Rail Infrastructure	nsion 417
	3. Federal, State, and Local Governments Should Increase Investment in Freight Transportation Infrastructure	
	4. Congress and State Legislatures Should Revise Permitting Requirements to Reduce Project Delays	
	5. Federal and State Regulators Could Increase the Stringency of Trucking Regulation Fully Account for Externalities and Reduce Price Disparity With Rail	to
	6. Federal Regulators Should More Closely Coordinate With Foreign Counterparts at U.S. Border	the 419
VI.	missions Reduction Opportunities at Ports and Other Freight Terminals	
	. Congress Could Provide EPA and States Additional Authority to Regulate Drayage Tru and Cargo Handling Equipment at Freight Gateways	ıcks 420
	1. Emission Reduction Opportunities for Drayage Trucks	
	2. Emission Reduction Opportunities for Cargo Handling	
	. Congress or State Legislatures Could Adopt Legislation Permitting Facilitywide Emission	ons
	Limits	
VII.	educing Last-Mile Delivery Emissions	

VIII	. Conclusion	. 422
<u>C1</u>		
Chapte	er 16 — Aviation, by Aoife O Leary	. 424
I.	Introduction	. 424
11.	Status of Regulation of GHGs From Aviation	. 425
	A. U.S. Aviation Emissions Are a Significant Contributor to Climate Change	. 425
	B. History of Aviation Emissions Regulation in the United States and at the International Level	. 427
	1. In the United States	. 427
	2. At the international Level	. 427
	C. Emissions Reduction Objective	. 429
	D. Feasibility of Reducing Aviation Emissions	. 429
	1. Aviation Efficiency Improvements	. 429
	2. Biofuel Use	. 430
	3. Operational Measures	. 430
	4. Demand Reduction	. 431
	5. Effect of New Technologies	. 431
III.	U.S. Domestic Legal Options for Reducing Emissions	. 431
	A. Adopt a Carbon Charge That Includes Aviation Emissions	. 431
	B. Increase Taxes on Aviation	. 432
	C. Introduce an Emissions Standard Under the CAA	. 432
	D. Require or Encourage the Use of Biofuels	. 434
	E. Reduce Emissions at Airports	. 434
	F. The Airline Industry and Business Should Undertake Voluntary Emissions Reduction Measures	. 435
	G. All Levels of Government Should Make Emissions Reductions a Core Goal of All Travel or	
	Aviation-Related Policies	. 436
	H. Enable or Encourage Less Flying	. 437
	I. Individuals Could Purchase Very High-Quality Offsets	. 437
	J. Reduce Emissions From Aviation Freight	. 437
IV.	Legal Options for Implementing and Strengthening International Emissions Reduction Agreements	. 437
	A. Adopt the ICAO CO ₂ Standard	. 438
	B. Adopt CORSIA and Voluntarily Participate in It	. 439
	C. Negotiate or Renegotiate Air Service Agreements With Other Countries to Allow Taxation of Fuel in International Aviation	. 440
	D. Align the Interests of U.S. Entities Responsible for Aviation Regulation	. 441
	E. Cooperate With Other Countries Outside of ICAO	. 441
	F. Lead the Effort to Set Emissions Reduction Goals Under the UNFCCC	. 441

	G. Encourage Enhanced Emissions Reductions in the Shipping Sector	
V.	Maximizing Co-Benefits	
	A. Reducing Noise and Air Pollution	
	B. Improving the Equity of the Climate Transition	
VI.	Conclusion	
Chapt	ter 17 — Shipping, by Aoife O'Leary	
I.	Introduction	
II.	Regulation of the Shipping Sector	
	A. The IMO and MARPOL	
	B. UNCLOS	
	1. Coastal Jurisdiction	
	2. Port Jurisdiction	
	3. Flag Jurisdiction	
	C. U.S. Laws Affecting Domestic Shipping	
	1. The Jones Act	
	2. The Maritime Security Act	
	D. Existing Regulations of Greenhouse Gas Emissions From Shipping	
	1. No Endangerment Finding for Marine Vessel Greenhouse Gases	
	2. Shipping in International Climate Agreements	
	3. The IMO SEEMP	450
	4. The IMO EEDI	
	5. MRV in the EU and the IMO	451
	6. Air Pollution Regulation in the IMO and United States	451
	E. Potential Reductions for Shipping	
	1. Slow Steaming	
	2. Renewable Energy and Low-Carbon Fuels	
	3. Taxation of Emissions	
	F. Co-Benefits of Emissions Reductions	
III.	Analysis of the Legal Issues and Options/Pathways	
	A. Potential U.S. Measures Tackling Domestic and International Shipping	
	1. Carbon Tax or Credit System	
	2. Efficiency Trading (Proposed by the United States in the IMO)	
	3. Endangerment Finding	
	4. Fuel Tax	
	5. The Jones Act	
	6. U.S. Government and State Government Procurement	

	7. Regulatory Action at the State Level	
	8. Actions That Ports Can Take to Reduce Emissions	
	9. Voluntary Industry Measures	
	B. IMO and UNFCCC Measures	
	C. Complementary Approaches	
	1. Reduction in Global Fossil Fuel Use	
	2. Limitation on Shipping in the Arctic	
	D. Equity	
IV.	Conclusion	

PART V — ELECTRICITY DECARBONIZATION

Chapte	r 18 — Utility-Scale Renewable Generating Capacity, by Michael B. Gerrard	
I.	Introduction	
II.	The Massive Number of Needed Facilities	
III.	Site Acquisition and Approval	466
	A. Federal Land	466
	B. Offshore Wind	
	C. Disturbed Land	
IV.	NEPA	
V.	State and Local Approvals	479
VI.	Species Protection Laws	
VII.	Needed Complementary Actions	
	A. Grid Connection and Integration	
	B. Subsidies and Incentives	
	C. Land Allocation	
VIII	. Conclusion	
Chapte	r 19 — Distributed Renewable Energy, by K.K. DuVivier	
I.	Introduction	
II.	Distributed Resources—PV Solar	
	A. Potential DG Capacity	
	B. Solar-Plus-Storage	
	C. Legal Issues and Pathways for Solar PV Installation	
	1. Incentives or Mandates for Renewable Energy and Storage	495
	2. Standardization of Permitting and Regulations	
	3. PUC Policies	500
	4. Local Government or Nongovernmental Actions	506

III.	Distributed Resources—Thermal Resources	508
	A. Technologies	508
	1. Hot Water	509
	2. Space Conditioning	512
	B. Legal Issues and Pathways for Thermal Resources	516
	1. Federal Initiatives	516
	2. State and Local Governmental Actions	516
	3. Nongovernmental Actions	521
IV.	Additional Issues	521
	A. Access to Technologies and Solar Rights	521
	1. Impediments to Solar Installations	522
	2. Solar Access Rights	522
	B. Ownership Structures	524
	1. TPO	524
	2. Community Ownership	525
V.	Conclusion	526
Chapte	er 20 — Transmission, Distribution, and Storage: Grid Integration, by Alexandra B. Klass	527
I.	Introduction	527
II.	The Electric Transmission Grid	527
III.	Transmission Needs for Deep Decarbonization	529
	A. Deep Decarbonization Reports	529
	B. Other Sources of Information on Deep Decarbonization, Transmission Needs, and Resource	
	Balancing	530
IV.	Technologies Available and Under Development for Deep Decarbonization	531
V.	Laws Applicable to Transmission Expansion for Deep Decarbonization	534
	A. State Siting and Eminent Domain Authority for Electric Transmission Lines	536
	B. Limited Federal Authority Over Electric Transmission Lines	537
	C. Other Laws That May Help or Hinder Electric Transmission Line Expansion and Efficiency	538
	1. Demand Response and Energy Efficiency	538
	2. Energy Storage	539
	3. Time-of-Use Pricing	540
	4. Energy Consumption Data Policies	540
VI.	Potential New Public Law Approaches	540
	A. Congressional Action on Electric Transmission Line Siting and Eminent Domain Authority	540
	B. Federal Agency Action to Expand Interstate Electric Transmission Lines	542
	C. Potential Actions by Congress, Federal Agencies, and RTOs to Facilitate New Technologies and Funding for Distribution Grid and Smart Grid Developments	542

	D. State-Law Legislative and Regulatory Initiatives	543
VII.	. Potential Mixed Public/Private Law Approaches	544
	A. Reducing Landowner Opposition to New Electric Transmission Infrastructure	544
	B. The Role of Technology Development in Reducing Transmission Needs	545
VII	I. Conclusion	546
Chapte	er 21 — Nuclear Energy, by David A. Repka and Tyson R. Smith	547
I.	Introduction: The Role of Nuclear Energy in Decarbonization	547
II.	The Current State of Nuclear Power and Regulation	549
	A. Advances in Nuclear Technology	549
	B. Current Legal and Regulatory Framework	551
	1. Federal Regulation (Safety and Environmental)	551
	2. State Regulation (Economic and Siting)	553
III.	Pathways to Preserving Currently Operating Nuclear Plants	555
	A. Federal Carbon Pricing	555
	B. Reforms in Competitive Energy Markets	556
	C. Tax Incentives	558
	D. NRC Second License Renewal	559
IV.	Pathways to Developing New Nuclear Capacity	559
	A. Cost Competitiveness of New Nuclear	560
	B. Financing Capital Costs of New Reactors	560
	C. Advanced Nuclear Technology Development and NRC Certification Costs	562
	D. Design Standardization	563
	E. NRC Licensing Costs and Regulatory Uncertainties	564
V.	Pathways to Support Nuclear Deployment Based on Other Major Federal Initiatives	566
	A. Large-Scale Public Nuclear Power Development	567
	B. Nuclear Waste Policy	567
VI.	Conclusions	569
Chapte	er 22 — Hydropower, by Charles R. Sensiba, Michael A. Swiger, and Sharon L. White	5/1
Ι.	Introduction	571
II.	Overview of Hydropower Regulation and Hydropower Development Potential	573
	A. Regulation Over Nonfederal Hydropower Under the FPA	574
	B. Environmental Regulation Over Nonfederal Hydropower Under Federal Environmental Statutes	575
	C. Potential for Expansion of Nonfederal Hydropower in the United States	576
	1. Upgrades and Optimization of Existing Conventional Projects	576
	2. New Hydropower Development at Existing Non-Powered Dams	576

	3. Low-Head Conduit Projects	577
	4. Pumped Storage Projects	578
	5. MHK Projects	579
	6. Preserving the Existing Fleet	580
III.	Resolving Impediments to Hydropower Development Through Legal Reform	580
	A. Fully Recognize Hydropower as a Renewable Energy Resource	581
	B. Require All Regulatory Agencies to Give "Equal Consideration" to the Climate Benefits of Hydropower in Their Licensing and Permitting Decisions	584
	C. Integrate the FERC Licensing Process With Other Regulatory Requirements and Require Greater Coordination and Schedule Discipline	585
	D. Promote Upgrades and Optimization of Existing Hydropower Projects Through Streamlined FERC Amendment Procedures and Jurisdictional Changes at Federal Dams	588
	E. Focus Licensing Requirements for New Pumped Storage Projects, Particularly Closed-Loop Systems	590
	F. Facilitate Development of Hydropower at Existing Non-Powered Dams Without Interfering With Existing Use of the Dams	591
	G. Prioritize Research and Development for MHK Technologies and Implement a Smarter Permitting Scheme	592
IV.	Resolving Market Impediments to Hydropower Development	593
V.	Conclusion	596
Chapte	er 23 — Electricity Charges, Mandates, and Subsidies, by Jim Rossi	598
I.	Introduction	598
II.	Past and Present Policies Reinforcing Carbon Lock-In	599
	A. Direct and Indirect Subsidies Favoring Fossil Fuel Energy Supply	600
	B. Ratemaking and the Incumbent Power Generation Fleet	601
	C. Federal Policies Favoring Competitive Energy Markets	601
III.	Existing Mandates, Subsidies, and Retail Customer Charges That Promote Decarbonization	602
	A. Mandates to Promote Decarbonization of Electric Power	602
	1. State and Local RPS Mandates	602
	2. Energy-Efficiency Mandates	603
	3. Low-Carbon Vehicle Mandates	604
	B. Subsidies for Decarbonization of Electric Power	605
	1. Subsidies Through General Taxation	605
	2. Subsidies for Low-Carbon Infrastructure	605
	3. Ratepayer Subsidies for Distributed Energy Resources	607
	C. Customer Retail Energy Charges	607
IV.	Scaling Up the Policy Toolbox for Deep Decarbonization of Electric Power	609
	A. Policy Guideposts	609

	В.	What Role Can State and Local Governments Play?	
		1. RPS	
		2. Energy-Efficiency Standards.	
		3. Setting Avoided Costs	
		4. Net Metering and Feed-In Tariffs	
		5. Eliminate Existing Regulatory Barriers	610
		6. The New Role of the Distribution Utility	611
		7. Subsidies for New Infrastructure	611
		8. Empowering Local Governments	611
		9. Ensuring Customer Equity and Fairness	611
		10. Regulatory Realignment	611
	С.	New Legislation by Congress	
		1. Pricing Carbon	
		2. Federal Tax Credits	
		3. Tax-Exempt Green Bonds	
		4. Private Financing Options	
		5. A National Clean Energy Standard	
		6. Funding Innovation	613
		7. Strengthening PURPA	614
		8. A Federal ZEV Mandate	614
		9. Information Sharing	614
		10. Requiring Agency Coordination	614
	D.	Federal Agencies and Deep Decarbonization of Electric Power	614
		1. An EPA "Bridge" Initiative	
		2. System Benefits Rate Adders	
		3. Increased Attention to Power Supply Decisions by FERC	
		4. Nondiscrimination Principles for a Decarbonized Grid	615
		5. Adoption of Policies to Promote Unbundling of Sales in Power Distribution	616
		6. FERC and Grid Resource Prioritization	
		7. National Environmental Policy Act Review for Decarbonization	
		8. Decarbonizing PURPA	
		9. Encouraging State Subsidies for Decarbonized Power Supply	617
		10. Improving Coordination	
V.	Co	nclusion	

Chapte	er 24 — Phasing Out the Use of Fossil Fuels for the Generation of Electricity, by Steven Weissman	
	and Réna Kakon (with appendices by Stephen Herzenberg and Michael B. Gerrard) 619)
I.	Introduction	9

II.	First, Have a Decarbonization Plan	623
III.	Create Specific Prohibitions or Limitations	624
	A. State Limitations on New Coal-Fired Power Plants	624
	1. What Some States Have Done	624
	2. What These and Other States Could Do	626
	B. Bans on the Use of Fossil Fuels	626
	C. Limits on GHG Emissions	626
	1. On the Federal Level	627
	2. On the State Level	628
IV.	Set an Accurate Price for Carbon-Based Generation	629
	A. Carbon Adder for Wholesale Electricity Rates	629
	B. Direct Price Effects on the State Level	630
	1. Carbon Adder	630
	2. Reduced Rates of Return	630
	C. Internalizing Cost Through Federal and State Environmental Regulation	631
	1. Clean Water Act: Cooling Water and §316(b)	631
	2. Resource Conservation and Recovery Act (RCRA): Coal Combustion Residual and Subtitle C	632
	3. Clean Air Act: The Mercury Rule	632
	4. Federal and State Environmental Review Processes for Factoring in GHG Impacts	633
V.	Close, or Divest Ownership in, Government-Owned Fossil Generators	634
VI.	Conclusion	635
App	endix A — Social Policies to Accelerate Fossil Fuel Phaseout, by Stephen Herzenberg	636
	I. Existing Policies at the Outset of the Trump Administration	637
	A. The POWER Initiative	637
	B. Worker Retraining	637
	C. Economic Adjustment Policies	638
	II. Federal and State Options for the Future	638
	A. Revitalizing the Economy of Coal Communities by Leveraging Local Activities and Investing More (RECLAIM) Act	638
	B. Active Labor Market Policies—"Universal Basic Adjustment Assistance"	638
	C. Enterprise Approaches	639
	D. Sectoral Approaches	640
	E. Macroeconomic Policies and Social Programs	641
	F. Revenue	641
	G. Build Equity Analysis Into Climate Adaptation Plans	641
App	endix B — Stranded Assets, by Michael B. Gerrard	643
	I. Stranded Assets Problem	643

II.	Recommendations	644	í
-----	-----------------	-----	---

PART VI — FUEL DECARBONIZATION

Chapt	er 25 — Bioenergy Feedstocks, by Blake Hudson and Uma Outka	
Ι.	Introduction	
II.	The Role of Bioenergy in Deep Decarbonization	
	A. Bioenergy Feedstocks	
	B. Legal and Policy Considerations	650
	C. Legal Pathways	
III.	Bioenergy in the United States and in Scenarios for Deep Decarbonization	651
	A. Bioenergy in the United States	
	1. Bioenergy for Transportation	651
	2. Bioenergy for Electricity Generation	
	B. Bioenergy Feedstocks in the United States and GHG Emissions	
	C. Scenarios for GHG Emissions Reductions by 2050 Using Bioenergy	654
	1. DDPP Scenarios	
	2. MCS Scenarios	654
IV.	Legal and Policy Considerations, Options, and Pathways	655
	A. Legal and Policy Considerations	656
	1. Legal Issues: Federalism	656
	2. Policy Choices: Balancing Competing Land Uses	656
	B. Legal Approaches	657
	1. Pathway #1: Prescriptive Land Use/Resource Management Regulation	658
	2. Pathway #2: Subsidies and Other Land Use Incentives	
	3. Pathway #3: Renewable Energy Mandates	
	4. Pathway #4: Direct Regulation of Biofuel Feedstock Products	
V.	Conclusion	
Chapt	er 26 — Production and Delivery of Low-Carbon Gaseous Fuels, by Romany M. Webb	670
т	Introduction	670
ı. TT	What Is Renewable Gas?	
11.	A Biogas	671
	1 Biogas Source Materials	
	 Available and Emerging Biogas Technologies 	
	3 Biogas Cleaning and Ungrading	673
	B. Power-to-Cas	672
	D. 10wel-to-Gas	

	2. The Methanation Process	674
	3. Available and Emerging P2G Technologies	674
	4. Gas Cleaning and Upgrading	675
III.	Renewable Gas' Role in a Decarbonized Economy	675
	A. Deep Decarbonization Pathways Project Findings	675
	B. Technical Potential of Renewable Gas	676
	C. Utilization of Renewable Gas	677
	D. Greenhouse Gas Emissions Reduction Potential of Renewable Gas	677
	E. Other Benefits of Switching to Renewable Gas	678
IV.	Regulatory Framework for Renewable Gas Production and Delivery	679
	A. Regulation of Renewable Gas Production	679
	B. Regulation of Renewable Gas Delivery	679
V.	Regulatory Changes Needed to Support Renewable Gas Production and Delivery	680
	A. Supporting Increased Renewable Gas Use	680
	B. Lessening Barriers to Renewable Gas Production and Delivery	681
	1. Facilitating Renewable Gas System Construction	681
	2. Providing Financial Support for Renewable Gas Facility Construction	682
	3. Addressing Restrictions on the Use of Renewable Gas Systems for Electricity Balancing	683
	4. Streamlining the Permitting Process for Gas Gathering Infrastructure	685
	5. Facilitating Interconnection With Gas Transmission and Distribution Pipelines	686
	6. Ensuring Appropriate Gas Quality Standards	687
	7. Controlling Gas Pipeline Leaks	688
VI.	Conclusion	690
Chapte	er 27 — Production and Delivery of Biofuels, by James M. Van Nostrand	692
I.	Introduction	692
II.	Overview of Biofuels Production and Delivery	693
III.	Regulatory Approaches to Achieve GHG Reductions	694
	A. Federal RFS	695
	1. EPAct and RFS1	695
	2. EISA and the Creation of RFS2	695
	B. LCFS	698
	1. California's LCFS	699
	2. Other States	701
IV.	Opportunities for GHG Reductions in Production and Delivery of Biofuels	702
	A. Regulatory Approaches and Recommended Changes	702
	B. Feedstock Transportation	704

	C. Production of Biofuels	705
	D. Fuel Transportation	708
V.	Conclusions	710

PART VII — CARBON CAPTURE AND NEGATIVE EMISSIONS

Chapte	er 28	B — Carbon Capture and Sequestration, by Wendy B. Jacobs and Michael T. Craig7	'13
Ι.	Int	roduction7	'13
II.	CC Pov	CS Technologies, Applications, and Potential for Achieving Deep Decarbonization of the U.S. wer Sector	'15
	A.	Potential Contribution of CCS to Reducing Carbon Dioxide Emissions	'15
	В.	CCS Technologies	'17
	C.	The Status of CCS in the United States: Laws and Projects7	'20
III.	Leg	gal Reforms Needed to Spur Widespread Capture of Carbon Dioxide7	'24
	А.	Introduction7	'24
	В.	Federal and State Governments Can Create Markets for Electricity Generated by CCS-Equipped Facilities	'25
		1. Presidential and Gubernatorial Executive Orders Can Require Governments to Procure Electricity Generated by CCS-Equipped Facilities	'25
		2. States Can Expand Their RPS to Include Low-Carbon Electricity Generated by Plants Equipped to Capture Carbon Dioxide	'25
		3. State Public Utility Commissions, Private Parties, and the Federal Government Can Help Stabilize and Subsidize Prices for CCS-Generated Electricity	'26
	C.	Congress and the States Can Also Provide a Variety of More Traditional Financial Incentives to Spur Capture of Carbon Dioxide	'26
		1. Congress Can Allocate Additional Funds and Expand Eligibility for Federal Tax Credits 7	'27
		2. State Legislatures Can Provide a Number of Tax Incentives to CCS7	'28
		3. State Public Utility Commissions Can Help Subsidize CCS Via Ratemaking Proceedings 7	'28
		4. Congress Can Extend the Deadlines Applicable to the Federal Funding7	'29
		5. Congress Can Authorize Additional Funds for Federal Loan Guarantees7	'29
	D.	Federal Agencies and States Can Tighten Regulatory Requirements to Spur Carbon Dioxide Capture	'30
		1. Under a New President, EPA Could Tighten the NSPS for Coal- and Natural Gas-Fired Power Plants	'30
		2. Under a New President, EPA Could Strengthen the CPP If It Survives Pending Reviews and Proposed Repeal	'32
		3. State Legislators and Regulators Can Impose Restrictions on Carbon Dioxide Emissions to Drive CCS	'35
		4. EPA Can Revise the New Source Review and Prevention of Significant Deterioration Permitting Requirements	'36
	E.	Federal and State Agencies Could Streamline Permitting and Improve Interagency Coordination	'37

IV.	Legal Reforms Needed to Encourage Construction of Carbon Dioxide Pipelines	737
	A. Introduction	737
	B. States and/or Regions Can Establish Pipeline Agencies	738
	C. DOE Can Study Repurposing and Requalifying Existing Oil or Gas Pipelines to Carry Carbon Dioxide	738
	D. DOE Can Resolve Uncertainties About Locations of Key Capture and Sequestration or Utilization Facilities and Jurisdictional Authority	739
	1. Evolving Regulatory Framework for Carbon Dioxide Pipelines	739
	2. Layers of Uncertainty Pose Challenges to the Development of a New Regulatory Framework for Carbon Dioxide Pipelines	740
	E. Regulatory Flexibility Should Be Maintained in the Near Term	
V.	Legal Reforms Needed to Facilitate Sequestration of Captured Carbon Dioxide	
	A. Introduction	
	B. Nature of Concerns About Long-Term Liability	
	C. Ownership of Pore Space	. 743
	D. Options for Managing Long-Term Liability and Costs of Geological Sequestration	. 744
	1. Congress Can Authorize the Department of the Interior and DOE to Own and Control Several Sequestration Sites	744
	2. Congress Can Create a Liability Trust Fund	
	3. EPA Can Authorize Expanded Use of Existing Oil and Gas Reservoirs for Sequestration.	. 745
	4. EPA and State Governments Can Shorten the Period of Liability	746
	5. BLM Can Prioritize Sequestration on Some Federal Lands	747
	6. Congress Could Create a Regulatory Framework for Offshore Carbon Dioxide Sequestration	747
	E. Existing Insurers Can Expand Their Products and More Insurers Can Enter the Market	
VI.	Private Actors Can Support CCS in Various Ways	
VII	. Conclusion	748
Chapt	er 29 — Negative Emissions Technologies and Direct Air Capture, by Tracy Hester	749
I.	Introduction	749
II.	The Current Status of NETs and DAC Development	752
	A. Mechanical DAC	. 753
	B. Carbon Removal Via Ocean Manipulation	. 755
	C. Accelerated Weathering and Enhanced Mineral Uptake	756
	D. BECCS	756
III.	Legal Reforms Needed to Maximize Use of NETs to Achieve Deep Decarbonization by 2050	758
	A. Legal Permissions and Authorizations to Construct and Initiate NET Operations	. 759
	1. Environmental Impact Assessments	. 760
	2. Land Acquisition and Use Authorization	761

	B	Legal Permits and Compliance Obligations for Ongoing NET Operations	761
		1. Integration Into GHG Permitting and Trading	761
		2. Environmental Authorization for Commercial Products or Fuels Generated by NET Operations, Including Captured CO ₂ Streams	762
		3. Potential Tort Liability for Damages Proximately Caused by NETs	762
		4. Authorizations for Marine-Based NETs	763
	С.	Legal Obligations Arising From NET Wastes and Emissions	764
		1. Managing and Disposing of Captured CO ₂	764
		2. Managing and Disposing of Residues and Emissions From the NET Process Itself	765
IV.	New	Public Law Approaches to Expedite Deployment of NETs for Deep Decarbonization	766
	A	Provide a Clear Statutory and Regulatory Endorsement of CO ₂ Removal as a Desired Goal of U.S. Environmental Policy	766
	В.	Provide Public Support and Investment for Basic Research Into the Feasibility and Cost-Effectiveness of NETs	766
	С.	Environmental Permits, Reviews, and Authorizations	767
	D. 1	Integration With State Renewable Energy Incentives and Portfolio Standards	768
		1. Damages and Liability	768
		2. Incentives	768
V.	Con	clusion	770
Chapte	er 30	- Agriculture, by Peter H. Lehner and Nathan A. Rosenberg	772
Ι.	Intro	oduction	772
II.	Agri	culture's Role in Deep Decarbonization	773
	А.	Greenhouse Gas Emissions in the Food System	773
	B. 1	Reducing Net Emissions From Agriculture	774
		1. Greenhouse Gas Emissions From Agriculture	774
		2. Soil Carbon Sequestration by Agriculture	775
	С	Agricultural Practices for Reducing Greenhouse Gas Emissions	776
		1. Introduction	776
		2. Cropland	777
		3. Grazing Land	786
		4. Animal Feeding Operations	788
	D	Agriculture's Maximum Possible Contribution to Reducing Carbon	792
III.	Pub	lic Law Pathways to Reducing Net Agricultural Greenhouse Gas Emissions	793
	Α.	Research, Development, and Extension Programs	794
		1. Research and Development	794
		2. Extension Service	797
		3. Coordinating Research, Development, and Extension	799

	B. Public Subsidy and Conservation Programs	. 799
	1. Crop Insurance	. 799
	2. Commodity Programs	. 801
	3. Conservation Payments	. 802
	4. Conservation Easements	. 805
	5. Conservation Compliance Requirements	. 806
	6. Renewable Fuel Standard Grassland Conservation Compliance	. 806
	7. Transforming the Farm Safety Net Through Legislative Action	. 807
	C. Trade Policy	. 809
	D. Tax Policy	. 809
	E. Regulatory Options	. 810
	F. Financing Options	. 812
	G. Grazing Practices on Government Land	. 813
	H. Greenhouse Gas Pricing	. 814
IV.	Non-Public Law Approaches to Reducing Net Agricultural Emissions	. 814
	A. Research	. 814
	B. Financing Options	. 815
	C. Measuring Carbon Content in Above-Ground Biomass and Soil	. 815
	D. Easements and Other Conservation Tools	. 816
	E. Offset Markets	. 816
V.	Reducing Food System Emissions	. 817
	A. Upstream: Greenhouse Gas Emissions From Farm Inputs	. 817
	1. Reduce Emissions From Fertilizer Production	. 817
	2. Promulgate Fuel Economy Standards for Agricultural Equipment and Reduce On-Farm Energy Use	. 818
	B. Downstream: Emissions From Food Processing, Packaging, Marketing, and Waste	. 818
	1. Reducing Processing, Packaging, Distribution, and Marketing Emissions	. 818
	2. Divert Food From Landfills	. 818
VI.	Changing Consumption Patterns	. 820
	A. Integrate Greenhouse Gas Emissions Into Dietary Guidelines	. 820
	B. Prioritize Climate Change Mitigation in Procurement Contracts	. 821
	C. Private Sector Strategy	. 821
	1. Create a Certification System	. 821
	2. Expand Restaurant Menu Options	. 821
VII.	Conclusion	. 822

Chapter 31 — Forestry, by Federico	Cheever with Robert B. McKinstry Jr.	
and Robert L. Fischman		823

I.	Introduction—Forests, Forestry, and Deep Decarbonization	. 823
II.	U.S. Climate Forestry—Background	. 825
	A. Forests and Climate Change Mitigation	. 826
	B. Forests and the Failure to Act	. 829
III.	Thinking About Legal Pathways	. 830
IV.	Legal Pathways—Climate Change and the National Forests	. 831
	A. Existing Laws and Policies	. 831
	B. Recommendations	. 833
V.	Legal Pathways-Climate Change and State Forests	. 835
	A. Existing Laws and Policies	. 835
	B. Recommendations	. 837
VI.	Legal Pathways-Climate Change and Private and Local Government Forestlands	. 837
	A. Federal Support	. 837
	B. State Forest Practices Laws	. 838
	C. Forest Offsets in Cap-and-Trade Systems	. 839
	D. State Programs Encouraging Substitution of Sustainably Produced Biomass for Fossil Fuel	. 839
	E. Local Government Action	. 840
	F. Private Forest Certification	. 841
	G. Land Conservation and Carbon Capture	. 841
	H. Land Conservation Tax Incentives	. 842
	I. Recommendations	. 843
VII.	Conclusion	. 844

PART VIII — NON-CARBON DIOXIDE CLIMATE POLLUTANTS

Chapte	er 32 — Black Carbon, by Melissa Powers	. 846
I.	Introduction	. 846
II.	Black Carbon's Climate Impacts and Recommended Emissions Reduction Objectives	. 848
	A. Black Carbon and Climate Change	. 848
	B. Technologies to Reduce Black Carbon	. 850
	C. Black Carbon Reduction Objectives	. 851
	1. Transportation Sector Emissions	. 851
	2. Energy/Power/Industrial Sources	. 851
	3. Residential Sources	. 851
	4. Open Biomass	. 851
III.	Strategies to Reduce Black Carbon Emissions From the Transportation Sector	. 852
	A. An Overview of the CAA	. 852
	B. An Overview of the CAA's Mobile Source Programs	. 853

		1. Vehicle and Engine Emission Standards	853
		2. In-Use Standards	854
	С.	Federal Mobile Source Standards	854
		1. Federal Vehicle Emission Standards—On-Road Vehicles	854
		2. Federal Vehicle Emission Standards—Nonroad Sources	856
		3. Federal Regulation of Engine Retrofits	857
		4. Recommendations for Strengthening Federal Standards	857
	D. (State Mobile Source Standards	859
		1. The California Waiver	859
		2. California's Emission Standards	859
		3. Other States' Emission Standards	860
		4. Recommendations	860
	Ε.	In-Use Regulation Through SIPs and State and Local Laws	861
		1. Regulation Consistent With SIPs	861
		2. Additional State and Municipal Regulations	864
		3. Constitutional Limits on State and Local Regulations	865
		4. Recommendations	866
	F.	Voluntary Programs and Funding Mechanisms	867
		1. Voluntary Federal Diesel Reduction Programs	867
		2. Voluntary State Reduction and Funding Programs	869
		3. The Volkswagen Settlement	869
		4. Recommendations	870
	G	Maximizing Environmental, Social, and Economic Co-Benefits	871
IV.	Red	ucing Black Carbon Emissions From Stationary Sources	871
	Α.	Stationary Source Programs for New and Modified Sources	871
	В.	Stationary Source Controls for Existing Sources	872
	С.	Recommendations	874
V.	Stra	tegies to Reduce Black Carbon Emissions From Residential Sources	874
	Α.	Laws, Policies, and Programs to Reduce Black Carbon Emissions	875
	B	Recommendations	875
VI.	Stra	tegies to Reduce Black Carbon Emissions From Open Biomass Burning	876
	А.	Open Burning Considerations	876
	B. 1	Laws and Policies to Limit Emissions of Open Burning	877
	С.	Recommendations	877
VII.	Con	clusion	878

I.	Introduction	
II. Methane as a Potent GHG		
	A. Methane's Contribution to Climate Change	
	B. Sources of Methane Emissions in the United States	
	C. Capturing Methane for Use as an Energy Source	
III.	Methane Capture in the Fossil Fuel Sector	
	A. Methane Emissions From Natural Gas and Petroleum Systems	
	1. Reducing Emissions From Oil and Gas Production	
	2. Reducing Emissions From the Transportation of Gas	
	B. Coal Mine Methane Emissions	
	1. Federal Regulation of Coal Mine Emissions	
	2. State Regulation of Coal Mine Emissions	
IV.	Methane Capture in the Agriculture Sector	
	A. Methane Emissions From Enteric Fermentation	
	1. Supporting Low-Emission Livestock Production	
	2. Encouraging Reduced Livestock Consumption and Production	
	B. Methane Emissions From Manure Management	
	1. Providing Funding for Improved Manure Management	
	2. Enhancing Access to Markets for Manure Management Byproducts	
	3. Regulation of Manure Management Emissions	
V.	Methane Capture in the Waste Management Sector	
	A. Landfill Methane Emissions	
	1. Methane Capture	
	2. Voluntary Programs Supporting Landfill Gas Capture	
	3. Regulation of Landfill Emissions	
	B. Sewage Treatment Methane Emissions	
	1. Voluntary Programs Supporting Gas Capture at Wastewater Treatment Facilities	
	2. Regulation of Wastewater Treatment Facility Emissions	
VI.	Conclusion	
Chapte	er 34 — Fluorinated Gases, by Nathan Borgford-Parnell, Stephen Oliver Andersen,	
Ŧ	and Durwood Zaelke	
1.	Introduction	
11	White and the L towned I breat to the L limete	

11.	The s and the Glowing Threat to the Ghinate	<i>J</i> 01
III.	International Law Context	906
IV.	Federal Regulatory and Policy Instruments for Controlling HFC Use and Emissions	907
	A. The National Recycling and Emission Reduction (NRER) Program	907
	B. The SNAP Program	907

	C. The Federal Acquisition Regulation (FAR)	. 908
	D. MAC Credits Under Federal Corporate Average Fuel Economy (CAFE) Standards	909
	E. The Green Proving Ground (GPG) Program	909
	F The GreenChill Partnership	. 909
	G. The RAD Program	. 909
V.	Federal Legal Pathways for Scaling Up the Decarbonization Benefits of HFC Emissions Reductions	909
	A. Congress Should Amend Title VI of the CAA to Cover HFCs	. 910
	B. EPA or the States Should Eliminate Unnecessary DIY Emissions From Mobile Air-Conditioning	910
	C. Congress Should Levy an Excise Tax on HFCs	. 910
VI.	Subnational and Private Controls on HFC Use and Emissions	. 910
	A. Subnational Climate Legislation and Executive Action	910
	B. Subnational Green Purchasing Programs	. 912
VII.	Subnational and Private Legal and Policy Pathways for Scaling Up the Decarbonization Benefits of HFC Emissions Reductions	912
	A. All States Should Consider Passing Legislation Similar to California's S.B. 605 on SLCPs	. 912
	B. Form "Buyer's Clubs" and Harmonize Sustainable/Green Purchasing Programs With the SNAP List of Chemicals	912
	C. Join the GSA's GPG Program or Develop Similar Programs to Spur Innovation and Deployment of New Clean Technologies	913
VIII	Recommendations on Catalyzing Simultaneous HFC Emissions Reductions and Improving Energy Efficiency	913
	A. The Federal Government and State Governments Should Use Life-Cycle Climate Performance (LCCP) Accounting in Their Energy-Efficiency Programs and Regulations	913
	B. The Federal Government, State Governments, and Voluntary Certification Programs Should Restrict Use of HFCs in Building Efficiency and Certification Programs	. 913
	C. Utilities Should Include Low-GWP Refrigerants in Their Energy-Efficiency Incentive Programs	914
IX.	Overcoming Barriers to the Introduction of Low-GWP Refrigerant Alternatives and the HFC Phasedown	. 914
Х.	Conclusion	. 915
Chapte	er 35 — <i>Nitrous Oxide</i> , by Jessica Wentz and David Kanter	. 916
Ι.	Introduction	. 916
II.	Background: U.S. Nitrous Oxide Emissions and Abatement Options	. 917
	A. Key Sources of Nitrous Oxide Emissions in the United States	. 918
	B. Existing Regulation	. 920
	C. Mitigation Potential for Nitrous Oxide Source Categories	. 920
	1. Agricultural Soil Management and Manure Management	. 921

		2.	Stationary and Mobile Combustion	925
		3.	Nitric and Adipic Acid Production	926
III.	Leg	gal P	Pathways to Reduce U.S. Nitrous Oxide Emissions	926
	А.	The	e CAA	927
		1.	Title VI—Stratospheric Ozone Protection	927
		2.	Section 111-Stationary Source Performance Standards	930
		3.	Section 202-Mobile Source Controls	932
		4.	Section 115—International Air Pollution	932
		5.	Recommendations for CAA Regulation	933
	В.	Rec	lucing Nitrous Oxide Emissions Through Cap and Trade	933
		1.	Nitrous Oxide in Existing Cap-and-Trade Programs	934
		2.	Design Considerations	934
		3.	Recommendations for Cap-and-Trade Programs	935
	C.	Sta	te and Local Approaches	936
	D.	Otl	her Approaches: Incentives, Technical Support, and Private Governance	937
		1.	Recommendations for Incentives, Technical Support, and Private Governance	938
IV.	Со	onclu	sion	939
Index	of R	lecor	nmendations Organized by Actor	940
Index				1041

Editors

Michael B. Gerrard is the Andrew Sabin Professor of Professional Practice at Columbia Law School, where he teaches courses on environmental and energy law, and founded and directs the Sabin Center for Climate Change Law. He is also a member and former Chair of the Faculty of Columbia's Earth Institute. Before joining the Columbia faculty in January 2009, Gerrard was a Partner in the law firm of Arnold & Porter in New York City; he is now Senior Counsel to the firm. He practiced environmental law in New York City full time from 1979 to 2008. He was the 2004-2005 chair of the American Bar Association's Section of Environment, Energy and Resources. He has also chaired the Executive Committee of the New York City Bar Association and the Environmental Law Section of the New York State Bar Association.

Since 1986, Gerrard has written an environmental law column for the New York Law Journal. He is author or editor of 13 books, two of which were named Best Law Book of the Year by the Association of American Publishers: Environmental Law Practice Guide (12 volumes, 1992) and Brownfields Law and Practice (four volumes, 1998). Among his other books are Global Climate Change and U.S. Law (with Jody Freeman) (2d ed. 2014); Law of Clean Energy (2011); and Climate Engineering and the Law: Regulation and Liability for Solar Radiation Management and Carbon Dioxide Removal (with Tracy Hester 2018). He received his B.A. from Columbia University and his J.D. from New York University Law School.

John C. Dernbach is the Commonwealth Professor of Environmental Law and Sustainability at Widener University Commonwealth Law School in Harrisburg, Pennsylvania, and Director of its Environmental Law and Sustainability Center. Professor Dernbach has written on sustainable development, climate change, and other topics in more than 50 articles for law reviews and peer-reviewed journals, and has authored, coauthored, or contributed chapters to more than 20 books. He is the editor (with James R. May) of Shale Gas and the Future of Energy: Law and Policy for Sustainability (Edward Elgar 2016), the principal author of Acting as if Tomorrow Matters: Accelerating the Transition to Sustainability (ELI Press 2012), and the editor of Agenda for a Sustainable America (ELI Press 2009) and Stumbling Toward Sustainability (ELI Press 2002).

Court on behalf of 18 prominent climate scientists in Massachusetts v. Environmental Protection Agency. His scholarship and advocacy helped persuade the Pennsylvania Supreme Court in landmark decisions in 2013 and 2017 to reinvigorate the Environmental Rights Amendment to the state constitution. He was a member of the National Research Council Committee that, in Sustainability and the U.S. Environmental Protection Agency (2011), made recommendations on how to institutionalize sustainability at the U.S. Environmental Protection Agency. Before taking his teaching position at Widener Commonwealth, Professor Dernbach worked in a variety of positions at the Pennsylvania Department of Environmental Protection, and served most recently as the agency's Policy Director. He is also the coauthor of a widely used and influential legal writing text, first published in 1981, that is now in a sixth edition and considered a classic in the field. He is a graduate of University of Michigan Law School and University of Wisconsin-Eau Claire.

Contributing Authors

Stephen Oliver Andersen is the American Director of Research at the Institute for Governance & Sustainable Development (IGSD). Before joining IGSD, he was a Founding Co-Chair and Senior Expert Member of the Montreal Protocol's Technology and Economic Assessment Panel, Director of Strategic Climate Projects at EPA, Deputy Director of the Stratospheric Protection Division and Liaison to DOD on Stratospheric Ozone and Climate Protection. Andersen is one of the founders and leading figures in the success of the Montreal Protocol on Substances that Deplete the Stratospheric Ozone Layer and author of the UN History of the Montreal Protocol (with K. Madhava Sarma). He received his Ph.D. from University of California, Berkeley.

Nathan (BP) Borgford-Parnell is the Science Affairs Advisor and Regional Assessment Coordinator for the Climate & Clean Air Coalition to Reduce Short-Lived Climate Pollutants and previously Staff Attorney at the Institute for Governance & Sustainable Development (IGSD). He was first introduced to the Montreal Protocol as a law student in 2007, when he joined the IGSD team for the final push on the accelerated phase-out of HCFCs and continued on that path through the passage of the historic Kigali Amendment to phase down HCFCs in October 2016. Borgford-Parnell has authored numerous articles on HCFCs and short-lived climate pollutants (SLCPs), including *Primer on SLCPs: Slowing the Rate of Global Warming Over the Near Term by Cutting Short-Lived Climate Pollutants to Complement Carbon Dioxide Reductions for the Long Term* (with Durwood Zaelke) and *Stratospheric Ozone, Global Warming, and the Principle of Unintended Consequences—An Ongoing Science and Policy Success Story* (with Stephen O. Andersen and Marcel L. Halberstadt). He holds a J.D. from American University Washington College of Law.

C. Baird Brown is Principal at eco(n)law LLC, where he works with energy customers and communities, and their technology and finance partners to deploy a new generation of energy and sustainability infrastructure. He has helped develop pooled procurement and financing techniques for building energy-efficiency improvements and renewable energy for clients such as the Delaware Sustainable Energy Utility, and has structured public-private partnerships for a broad array of infrastructure projects. Brown develops regulatory strategies, tax structures, and project documentation for innovative projects, and counsels clients in connection with taxable and tax-exempt, rated and unrated, and registered and unregistered financings and credit arrangements. He helped form and serves as Co-Counsel to the Microgrid Resources Coalition. Baird has played key roles in organizations that advance energy and sustainability goals. He served as a co-chair of energy related committees of the American Bar Association (ABA) and the International Bar Association, and he was a principal author of the form Renewable Energy Credit Purchase Agreement for the American Council on Renewable Energy, the Energy Markets Association, and ABA. He represents the Foundation for Renewable Energy and Environment, and serves on the boards of nonprofit organizations that work for community revitalization and energy justice.

Keturah A. Brown is an Associate at Van Ness Feldman LLP in Washington, D.C. She assists clients in a variety of federal regulatory matters, including compliance with energy and environmental laws. Her focus includes motor vehicle air emissions compliance, specifically state and federal greenhouse gas emissions standards and California zero-emission and low-emission programs, and pipeline certification at the federal and state levels. Prior to law school, Brown was a Florida Gubernatorial Fellow and spent her fellowship at the Florida Fish and Wildlife Conservation Commission (FWC). While at FWC, she drafted the commission's position on the ESA. She holds a J.D. from George Washington University School of Law, an M.P.A. from Florida State University with a certificate in Emergency Management, and a B.S., *magna cum laude*, from Florida State University.

Michael Burger is the Executive Director of the Sabin Center for Climate Change Law and a Research Scholar and Lecturer-in-Law at Columbia Law School. He is a widely published scholar, a frequent speaker at conferences and symposiums, and a regular source for media outlets. From 2010-2015, he was an Associate Professor at Roger Williams School of Law, where he taught courses in environmental law, administrative law, and law & literature, and founded and directed

the Environmental and Land Use Law Clinical Externship. Prior to that, he was an acting assistant professor of lawyering at New York University School of Law, and an attorney with the Office of the Corporation Counsel for the city of New York. He is also a co-founder and member of the Environmental Law Collaborative. Michael is a graduate of Columbia Law School and Brown University, and holds a Master of Fine Arts degree from the Creative Writing program at NYU.

Andrea Hudson Campbell is a Partner at Van Ness Feldman LLP in Washington, D.C. She advises major international passenger car, light-duty truck, and heavy-duty vehicle and engine manufacturers on a wide range of federal and state environmental and energy policy, regulatory, legislative, and compliance matters. A significant portion of her practice involves greenhouse gas/fuel economy standards applicable to light-duty vehicles and heavy-duty trucks and engines. She also provides strategic advice on California zero-emission and low-emission vehicle programs, including matters related to advanced-technology vehicle charging and refueling infrastructure. Campbell represents vehicle and engine manufacturers in EPA recalls, enforcement actions, and investigations, and advises on vehicle labeling, distribution, and importation matters. Her experience includes working with HFC and fluorinated compound users and manufacturers on matters related to EPA's Significant New Alternatives Policy. She holds a J.D., with honors, from the George Washington University Law School, and a B.A. from Douglass College at Rutgers University.

Frederico Cheever (deceased) was a Professor of Law at the University of Denver Sturm College of Law. He began teaching at the law school in 1993 specializing in environmental law, wildlife law, public land law, land conservation transactions, and property. Cheever briefly left Denver in 2000 to be a Visiting Fellow at Queen Mary and Westfield College, University of London, and in 2002, he served as the DU Law Hughes/Rudd Research Professor. During the summer of 2005, he was a Visiting Professor at Northwestern Law School, Lewis & Clark College. He was also an adjunct professor at the Colorado School of Mines, teaching environmental law. Until his passing, Cheever wrote extensively about the Endangered Species Act, federal public land law, and land conservation transactions. He received his law degree from UCLA and his undergraduate and masters degrees from Stanford University.

Michael T. Craig received his Ph.D. from the Engineering and Public Policy Department at Carnegie Mellon University. He works on mitigating climate change through reducing emissions from the electric power sector. Craig has published peer-reviewed papers on rooftop solar, grid-scale storage, and carbon capture and sequestration. Previously, he obtained an M.S. in Technology and Policy from Massachusetts Institute of Technology and a B.A. in Environmental Studies from Washington University in St. Louis.

K.K. DuVivier is a tenured Full Professor of Law at the University of Denver Sturm College of Law. She has taught fulltime at the law school level since 1990, including 10 years at the University of Colorado School of Law before joining the Denver Law faculty in 2000. She received the Robert B. Yegge Excellence in Teaching Award in 2018, the Hughes-Ruud Research Professorship from 2015 to 2018, the AALS Teacher of the Year for University of Denver Sturm College of Law in 2015, the Student Bar Association Mentorship Achievement Award in 2013-2014, and the Sturm College of Law Faculty Excellence Award for Best Professor in 2012-2013. Professor DuVivier's current research and teaching focuses are energy and renewable energy law, with a special emphasis on wind, solar, and energy efficiency. In addition to scores of articles, she has authored two books: *Energy Law Basics* (2017) and *The Renewable Energy Reader* (2011). Professor DuVivier worked as a field geologist before law school, and after earning her J.D., she practiced for eight years, first in natural resources law at the law firms of Sherman & Howard and Arnold & Porter, then as an Assistant City Attorney in the land use and revenue section for the City and County of Denver. Her net-zero-energy house, built using Passiv Haus standards, won the Colorado Renewable Energy Society's award for Renewable Energy and Sustainable Design in Buildings—Single Family in 2012.

Steven Ferrey is a Professor of Law at Suffolk University Law School in Boston. He previously served as a Visiting Professor of Law at Harvard Law School and Boston University Law School, and taught law in Europe and Asia. Since 1993, he served as a primary international legal advisor to the World Bank and the United Nations on renewable energy and climate change projects in numerous developing countries in Asia, Africa, and Latin America. In the last year, this has included Vietnam, Sri Lanka, Mozambique, the Solomon Islands, Fiji, and Papua New Guinea. Professor Ferrey served as Vice-Chair of two different American Bar Association Energy and Climate Change Committees. He has testified as an expert before seven different committees of the U.S. Congress on energy and environmental matters, and was appointed by prior U.S. presidents to serve on three different national presidential energy boards. He is the author of seven books

and 100 articles on environmental and energy law. His books include the three-volume *Law of Independent Power*, now in its 46th edition, 2018; *Environmental Law: Examples & Explanations*, 7th ed. 2016 & 8th ed. 2019; *Renewable Power in Developing Countries* (2006); and *Unlocking the Global Warming Toolbox* (2010). In addition to holding a J.D. degree from University of California, Berkeley, Professor Ferrey holds a bachelor's degree in Economics from Pomona College in California and a master's degree in Urban and Regional Environmental/Energy Planning from Berkeley, and was a Fulbright Fellow in Energy Law at the University of London between his U.S. graduate degrees.

Joshua P. Fershée is a Professor of Law at West Virginia University College of Law and is a globally recognized expert in the areas of energy law and policy, and business law and entity governance. He works with the College of Law's Center for Energy and Sustainable Development and serves as Research Faculty and the Head of the Economic and Community Development Group in the Center for Innovation in Gas Research and Utilization, which is located in the Benjamin M. Statler College of Engineering and Mineral Resources. He is also a co-investigator on a \$1.26M Research Challenge Grant from the West Virginia Higher Education Policy Commission. He served as Associate Dean for Faculty Research and Development from June 2015 to June 2018. Professor Fershee has presented his research in Spain, Poland, and the United Kingdom. He has taught about energy and cyber security in Geneva, Switzerland, and has presented his work discussing the economic, environmental, and social opportunities and challenges related to shale oil and gas development to U.S. audiences and delegations from multiple countries, including Lithuania, Brazil, South Africa, Mongolia, Ukraine, Colombia, and Indonesia. Professor Fershee received his J.D., *magna cum laude*, from Tulane Law School, where he was elected Order of the Coif and editor in chief of the *Tulane Law Review*, and is a graduate of Michigan State University. Before joining West Virginia University, Professor Fershee served as an Associate Professor of Law and Associate Dean for Academic Affairs & Research at the University of North Dakota School of Law and as a Visiting Assistant Professor of Law at Penn State University School of Law.

Robert L. Fischman is the George P. Smith, II Distinguished Professor of Law and Adjunct Professor of Public and Environmental Affairs, at the Indiana University Maurer School of Law. At the Indiana University Maurer School of Law, Fischman teaches Environmental Law, Administrative Law, Public Natural Resources Law, Water Law, Wildlife Law, and an Advanced Environmental Seminar. At IU's School of Public and Environmental Affairs, he teaches a capstone seminar and a course on biodiversity conservation policy. Professor Fischman is a founding board member of the Conservation Law Center, Inc., which operates the law school's conservation law clinic. His research explores the relationship between law and conservation implementation, and he is a co-author of the leading casebook on public land and resources law.

Robert Freedman is one of Shearman & Sterling LLP's Energy Industry Leaders and a Partner in the Project Development & Finance practice. He focuses on finance and development, asset acquisitions and dispositions, and complex workouts and restructurings of infrastructure assets across the breadth of infrastructure sectors, including power, renewables, and sustainable development. Freedman's clients include major corporations, private equity and other institutional investors and banks, and others financial institutions. He has been widely quoted in industry, national, and international publications, including *The New York Times* and the *Financial Times*, on matters relating to renewables and other infrastructure sectors. Prior to joining Shearman & Sterling, Freedman was a Managing Director and Counsel with GE Energy Financial Services, the energy investment business of the General Electric Company. He has been ranked Band 2 for Projects by *Chambers USA* (2017) and named a Leading Lawyer for Project Finance by *The Legal 500 US* (2017).

Ben Haley, Co-Founder of Evolved Energy Research, has unique experience developing energy system models to support energy transformation decisionmaking. His models have been utilized by parties from the California state government to support 2030 greenhouse gas target-setting and by the research team representing the United States in the Deep Decarbonization Pathways Project convened at the behest of the United Nations. Haley has a passion for problem solving and a deep technical knowledge of energy, specifically in the growing interaction between electricity and other sectors of the energy economy. His education includes a master's degree in International Environmental Policy from Middlebury Institute of International Studies and a bachelor's degree in Business Administration from Bucknell University.

Stephen Herzenberg holds a Ph.D. in Economics from Massachusetts Institute of Technology and has been Executive Director since December 1995 of the Keystone Research Center (KRC), the mission of which is to promote a more prosperous and equitable Pennsylvania. Before KRC, Herzenberg worked at the U.S. Congressional Office of Technology Assessment and the U.S. Department of Labor (DOL). At DOL, he served as Assistant to the chief negotiator of the labor

side agreement to the North American Free Trade Agreement. He also researched and wrote on the international labor rights and standards, and the integration of the U.S.-Canada and Mexican auto industries. One unifying theme in Herzenberg's research has been the challenges workers face in the transition from a manufacturing dominated U.S. economy with limited imports to a global, postindustrial, service-dominated economy. At KRC, he has written extensively on the policies and institutions that might improve "non-mobile" service jobs as well as conducted an assessment of Pennsyl-vania's training and adjustment programs for dislocated manufacturing workers on the 25th anniversary of the "Rapid Response" program's creation. Herzenberg's writings for national audiences include *Losing Ground in Early Childhood Education*, Economic Policy Institute, 2005; *New Rules for a New Economy: Employment and Opportunity in Postindustrial America*, Cornell/ILR Press, 1998; *U.S.-Mexico Trade: Pulling Together or Pulling Apart?* U.S. Congressional Office of Technology Assessment, September 1992; and *Labor Standards in the Global Economy*, U.S. Department of Labor Bureau of International Labor Affairs, 1990.

Tracy Hester is a Lecturer at the University of Houston Law Center, where he teaches courses on environmental law, climate change, emerging technologies, and statutory interpretation. His research focuses on the innovative application of environmental laws to emerging technologies and risks, such as climate engineering, genetic modification, nanotechnologies, wind and other renewable energy projects, and on novel compliance and liability issues. He also writes on the application of environmental criminal laws to disasters and accidental releases. Professor Hester was inducted into the American College of Environmental Lawyers in 2015, elected as a member of the American Law Institute in 2004, and named the Top Environmental Lawyer in Houston in 2011 by Best Lawyers of America. He was also elected to the Council of the American Bar Association's Section on Environment, Energy and Resources (SEER) in 2011, and he currently co-chairs SEER's Law Professors Committee.

Shi-Ling Hsu is the D'Alemberte Professor of Law at the Florida State University College of Law, and is currently serving as the Associate Dean for Environmental Programs. Prior to his current appointment, Professor Hsu was a Professor of Law and Associate Dean for Special Projects at the University of British Columbia Faculty of Law. He has also served as an Associate Professor at George Washington University Law School, a Senior Attorney and Economist for Environmental Law Institute, and a Deputy City Attorney for the City and County of San Francisco. Professor Hsu practiced law with the firm of Fenwick & West in Palo Alto, California. He holds a B.S. in Electrical Engineering from Columbia University, and a J.D. from Columbia Law School. He also has an M.S. in Ecology and a Ph.D. in Agricultural and Resource Economics, both from University of California, Davis. Professor Hsu has taught in the areas of environmental and natural resource law, law and economics, quantitative methods, and property. He serves on the Board of Advisors of Citizens Climate Lobby and as an adjunct scholar with the Niskanen Center.

Blake Hudson is the A.L. O'Quinn Chair in Environmental Law and Professor of Law at the University of Houston Law Center. Professor Hudson's research considers how property, land use, and natural resources law and policy intersect with environmental and constitutional law, with specific focus on the issue of federalism and property rights as they relate to land use and the environment. One branch of his research centers on "commons" scholarship and the complicated role of private property rights and government institutions as solutions to commons dilemmas. Professor Hudson's research further assesses how the issues of federalism and constitutional structure have the potential to both complicate and resolve land use and natural resource management issues at the state, federal, and international levels, with particular emphasis on forests, natural capital impacted by direct land use planning, and the legal and political institutions established to govern those resources. He has also begun writing about the role of culture and political philosophy in influencing land use decisions and natural resources management, particularly in the U.S. South. Professor Hudson teaches courses in natural resources law and policy, water law, and property law. Professor Hudson obtained his bachelor's degree in both Biology and History, as well as minors in Pre-Law and Political Science, at University of Montevallo, where he was a scholar-athlete. He graduated with high honors from Duke University School of Law, and graduated with a master's degree in Environmental Science and Policy from Duke University's Nicholas School of the Environment.

David Ismay is a Senior Attorney for the Conservation Law Foundation (CLF) in Boston, specializing in clean energy and climate change policy, law, and regulation. Ismay regularly represents CLF in proceedings before state environmental and energy agencies as well as in state and federal court, and is an adjunct lecturer in energy law and policy at Northeastern University School of Law. He is also a senior advisor to the U.S. Deep Decarbonization Pathways Project. Before joining CLF, Ismay was a Senior Associate at Farella Braun + Martel LLP in San Francisco, where he

practiced infrastructure, renewable energy, and land-use law. His commercial practice involved drafting, negotiating, and litigating commercial contracts for public and private entities, with a focus on major capital construction of buildings, infrastructure, and renewable/alternative energy power plants. He also has significant experience prosecuting and defending local land use approvals and related environmental review. Before law school, Ismay served both as a Surface Warfare and Special Warfare officer in the U.S. Navy. Ismay holds a B.S. in History, with honors, from the United States Naval Academy, an M.A. in Philosophy, Politics, and Economics from Oxford University (Queen's College), where he was a Rhodes Scholar, and a J.D. from Berkeley Law School (Boalt Hall). He served as a law clerk to the Hon. James R. Browning, Senior Judge on the U.S. Court of Appeals for the Ninth Circuit, and is admitted to practice in Massa-chusetts and California, the U.S. District Court for the Northern District of California, and before the U.S. Court of Appeals for the Second and Ninth Circuits.

Wendy B. Jacobs is the Emmett Clinical Professor of Environmental Law and Director of the Harvard Law School (HLS) Emmett Environmental Law & Policy Clinic. She serves on the Faculty of the Harvard Center for Health and the Global Environment and as Special Adviser to the HLS Dean on Learning and Practice. She is a member of the American College of Environmental Lawyers and is the Board Chair of the Clean Air Task Force. In the Clinic, Jacobs and her students work on a variety of complex environmental and energy law and policy projects, with a focus on citizen science, climate change mitigation, resiliency and displacement, sustainable aquaculture and agriculture, renewable energy, microgrids and district energy, carbon capture and sequestration, improved oversight and management of offshore drilling, protection of the Arctic, energy justice, and protection of national monuments. In 2017, she launched the Climate Solutions Living Lab course, in which advanced students from multiple disciplines across Harvard University collaborate in designing projects to help universities and other enterprises reduce climate impacts via off-campus actions and investments. Prior to joining HLS, Jacobs practiced environmental and administrative law as a partner at Foley Hoag LLP in Boston for 20 years, and before that as an appellate attorney and special litigator for the Environment Division of the U.S. Department of Justice in Washington, D.C. She received her J.D., with honors, in 1981 from HLS, where she was an editor of the *Harvard Law Review*.

Ryan A. Jones, Co-Founder of Evolved Energy Research, has deep analytical expertise in electricity operations, reliability, and long term planning. His work has focused on jurisdictions with increasing levels of renewable energy, exploring implications from the perspective of system operators, as well as renewable developers and energy technology companies. Through this work, creating and using a broad set of analytical tools, Jones has developed a unique conceptual understanding of the long-term challenges and opportunities of deep decarbonization. He holds a master's degree from Stanford University in Atmosphere/Energy and a bachelor's degree, *summa cum laude*, from Emory University in Environmental Studies and Physics.

Réna Kakon is an Attorney at the California and Paris bars. She is in-house legal counsel for Fenix International, a technology company focusing on energy access and financial services for rural Africa, founded in San Francisco, headquartered in Uganda, and owned by the French public utility company Engie. She previously worked on energy and climate policies for the CPUC and Dentons. She trained at Baker McKenzie and Dentons following her studies in business and tax law at University Paris I-La Sorbonne Law School and Paris II-Assas Law School. She received a certificate in English law from the University of Birmingham and an LL.M. with a certificate in energy and cleantech law from Berkeley Law.

David R. Kanter is an Assistant Professor of Environmental Studies at NYU. His research focuses on the interconnected challenges of nitrogen pollution, sustainable agriculture, and climate change. He received his Ph.D. in Science, Technology and Environmental Policy from Princeton University and his B.Sc. in Chemistry and Law from the University of Bristol in the United Kingdom. Prior to NYU, Professor Kanter was a Postdoctoral Research Fellow at the Earth Institute at Columbia University.

Kit Kennedy is a Senior Director of the Climate and Clean Energy Program at the Natural Resources Defense Council (NRDC). She directs NRDC's advocacy at the state and regional level to accelerate progress on scaling up clean energy, including energy efficiency, renewable energy, transportation electrification, and building decarbonization, as well as creating and strengthening state carbon policies and markets. Kit has 30 years of experience as an environmental and energy attorney and advocate. From 2007-2010, she served as Special Deputy Attorney for Environmental Protection at the New York Attorney General's Office, where she directed the litigation and policy activities of the office's Environmental

Protection Bureau. Kit has taught courses in environmental and clean energy at Vermont Law School, Yale Law School, and Fordham University School of Law. She serves on the board of the New York League of Conservation Voters Education Fund, the Alliance for Clean Energy New York, and the Executive Board of the New York State Bar Association's Environmental Law Section. She is a member of the American College of Environmental Lawyers. She is a graduate of Harvard Law School and Harvard College.

Alexandra B. Klass is a Distinguished McKnight University Professor at the University of Minnesota Law School. She teaches and writes in the areas of energy law, natural resources law, environmental law, tort law, and property law. Her recent scholarly work, published in many of the nation's leading law journals, addresses regulatory challenges to integrating more renewable energy into the nation's electric transmission grid, siting and eminent domain issues surrounding interstate electric transmission lines and oil and gas pipelines, and applications of the public trust doctrine to modern environmental law challenges. Klass is a coauthor of *Energy Law and Policy* (West Academic Publishing, 2d ed. 2018) (with Davies, Osofsky, Tomain, and Wilson), *The Practice and Policy of Environmental Law* (Foundation Press, 4th ed. 2017) (with Ruhl, Salzman, and Nagle), *Energy Law: Concepts and Insights* (Foundation Press 2017) (with Hannah Wiseman), and *Natural Resources Law: A Place-Based Book of Problems and Cases* (Aspen, 4th ed. 2018) (with Klein, Cheever, Birdsong, and Biber). Prior to her teaching career, she was a Partner at Dorsey & Whitney LLP in Minneapolis, where she specialized in environmental law and land use litigation. She is a member scholar at the Center for Progressive Reform, and a Fellow and Faculty Leadership Council member at the University of Minnesota's Institute on the Environment.

Gabe Kwok, a Principal with Evolved Energy Research, has expertise in energy planning, wholesale electricity markets, asset evaluation, and economic analysis. His work supports the policy, planning, and investment decisionmaking needs of clients across all sectors, including regulators, utilities, project developers, investors, and NGOs. He develops and employs quantitative tools to answer complex energy and environmental questions, and frequently provides reports and presentations communicating insights. Kwok brings together modeling expertise and an understanding of the technical and institutional aspects of the energy economy to help clients holistically understand and respond to deep decarbonization. He earned a master's degree in Environmental Management from Duke University and a bachelor's degree in Economics from Texas A&M University.

Monica Lamb is an Attorney representing renewable power plant developers, investors, and energy technology startups. She draws on years of experience as a solar power plant developer and in cleantech business development to help clients navigate the quickly shifting energy regulatory landscape to build sustainable, financeable projects and businesses. Lamb has contributed to the UNECE's ongoing efforts to develop standards for public-private partnerships for renewable energy power plants, in pursuit of the UN's Sustainable Development Goals. She has testified before the Energy Subcommittee of the U.S. House of Representatives on the role of new technologies serving energy consumers. Lamb holds a J.D. from Columbia Law School and a B.A. in Economics from Harvard College.

Peter H. Lehner is a Senior Strategic Advisor and Senior Attorney at Earthjustice, and directs the Sustainable Food & Farming Program, deploying strategies to reduce health, environmental, and climate harms from production of our food and to promote a more environmentally sound and climate-change resilient agricultural system. From 2007-2015, Lehner was the Executive Director of the Natural Resources Defense Council (NRDC) and the NRDC Action Fund. There, he grew the organization and particularly the climate change and clean energy programs, opened several new offices and programs, and expanded the food system work. From 1999-2006, he served as Chief of the Environmental Protection Bureau of the New York State Attorney General's office, supervising all environmental litigation by and against the state. His cases there created important clean air, climate change, and watershed protection precedents. Lehner previously served at NRDC for five years directing the Clean Water Program. Before that, he created and led the Environmental Prosecution Unit for the New York City Law Department and served in the Affirmative Litigation Division. He clerked for Chief Judge James Browning of the U.S. Court of Appeals for the Ninth Circuit. Peter holds an A.B. in Philosophy and Mathematics from Harvard College and is an honors graduate of Columbia University Law School, where he taught for many years. Lehner also manages two large farms in Costa Rica. He is on several NGO boards, and has been honored with numerous awards by EPA and many environmental groups.

Gregg P. Macey is a Professor of Law, Brooklyn Law School, where he teaches courses on environmental law and property, a Visiting Professor at Massachusetts Institute of Technology (MIT), where he teaches a course in environmental justice law and policy, and a Visiting Research Fellow with the Program on Science, Technology & Society at Harvard University. His research interests include environmental and energy law, environmental health, and organizations. His articles appear in *Georgetown Law Journal, Environmental Health, Arizona State Law Journal, Cornell Law Review, Environmental Management*, and the *Journal of Policy Analysis and Management*, among other journals. Professor Macey has also published chapters in *Risk Analysis of Natural Hazards* (2016) and *Legal Pathways to Deep Decarbonization in the United States* (2018), as well as an edited volume on the future of the Superfund program, *Reclaiming the Land* (with Jon Cannon). He previously worked as a patent litigator, lecturer in urban planning, environmental consultant, and land use mediator. He has a Ph.D. in Urban Planning from MIT and a J.D. from the University of Virginia.

Gary E. Marchant is the Regents' Professor and Lincoln Professor of Emerging Technologies, Law, and Ethics at the Arizona State University Sandra Day O'Connor College of Law. Professor Marchant's research interests include the use of genetic information in environmental regulation, risk and the precautionary principle, legal aspects of personalized medicine, and regulation of emerging technologies such as nanotechnology, neuroscience, artificial intelligence, and bio-technology. He teaches a variety of courses focusing on law, science, and technology. Professor Marchant has served on six National Academy of Sciences committees, has been the principal investigator on several major grants, and has organized numerous academic conferences on law and science issues. He received his undergraduate degree and Ph.D. from the University of British Columbia, his J.D. from Harvard Law School, and his Masters in Public Policy from the Harvard University Kennedy School of Government.

Caitlin McCoy is the Climate, Clean Air & Energy Fellow for the Environmental & Energy Law Program at Harvard Law School. She was previously a Visiting Associate Professor of Law and the Environmental Program Fellow at George Washington University Law School (GW), where she taught classes on environmental law to undergraduate, graduate, and law students. Before GW, she served as the Legal Director of The Center for Coalfield Justice, where she worked on environmental justice, coal mining, and shale gas drilling issues in southwestern Pennsylvania. McCoy earned her LL.M. in International Environmental Law, with highest honors, from George Washington University Law, her J.D., *cum laude*, from Washington University School of Law, and her B.A., with highest honors, from University of California, Berkeley.

Robert B. McKinstry, Jr., Environmental and Climate Law Attorney and Consultant. He is a former partner of Ballard Spahr, LLP, where he led the firm's Climate Change and Sustainability Initiative and founded the firm's Environment and Natural Resources Group. Major cases in which he was involved include *Michigan v. EPA*, 135 S. Ct. 2699 (2015); *EPA v. EME Homer City Generation, L.P.*, 134 S. Ct. 1584 (2014); *Massachusetts v. EPA*, 549 U.S. 497 (2007); and *Raytheon Constructors Inc. v. ASARCO Inc.*, 368 F.3d 1214 (10th Cir. 2003). Between 2001-2007, he served a six-year term as the Maurice K. Goddard Chair in Forestry and Environmental Resources Conservation in the Pennsylvania State University School of Forest Resources. He has also taught climate change and other environmental law topics at Penn State as an adjunct professor of law. He received his undergraduate degree, with honors, from Swarthmore College, a masters degree from the Yale School of Forestry and Environmental Studies, and his J.D. from Yale Law School.

Claire Melvin is an Associate Attorney in the Project Development & Finance practice at Shearman & Sterling LLP. She joined Shearman & Sterling in 2015 after earning her J.D. from Washington University School of Law. Her practice focuses on finance and development of renewable energy projects in the United States and Latin America.

Aoife O'Leary is a Senior Legal Manager at the Environmental Defense Fund with substantial environmental and economic experience. After qualifying as a lawyer in Ireland, she moved into the environmental sector. She worked with and advised various NGOs on the environmental impacts of international shipping and aviation, EU environmental governance, and UK community energy. After working in the legal and environmental sectors for a number of years, O'Leary decided to gain economics expertise to bring an additional element to her work and has since ensured economic incentives form part of the policy solutions she advocates. She is a board member of Rethinking Economics (a charity campaigning to reform the economics curriculum in the UK) and Economy (a charity working to make economics more understandable).

Uma Outka works at the intersection between energy law and environmental law, with a focus on renewable energy and the transition to a low-carbon electricity sector. She joined the University of Kansas School of Law (KU) faculty in 2011, teaching courses in energy law, environmental law, property, and climate change law and policy. Her scholarship has appeared in law journals, including *Vanderbilt Law Review, Ecology Law Quarterly, Colorado Law Review* and the *Stanford Environmental Law Journal*, and her chapter on *Legal Regimes for Land Use, Land Use Change and Forestry* is featured in the comparative law reference volume *Research Handbook on Climate Change Mitigation Law* (Edward Elgar Publ. 2015). Before coming to KU Law, Outka spent two years as a Visiting Scholar in Energy and Land Use Law at the Florida State University College of Law (FSU). As a faculty research partner with FSU's Institute for Energy Systems, Economics and Sustainability, she directed a Sustainable Energy Research Project aimed at understanding and advancing legal frameworks to support sustainable energy development and organized a national symposium on energy and land use issues at FSU. Outka previously worked as General Counsel for 1000 Friends of Florida, a nonprofit advocacy organization focused on growth management, environmental conservation, and affordable housing, and in private practice with the firm Verrill Dana, LLP in Portland, Maine. She is a *summa cum laude* graduate of University of Maine School of Law, and holds a master's degree in Public Policy and Administration from the Muskie School of Public Service.

Lee Paddock is the Associate Dean for Environmental Law Studies at George Washington University Law School. From 2002-May 2007, he was the Director of Environmental Legal Studies and an Adjunct Professor of Law at Pace University School of Law. Paddock's research has focused on private environmental governance, environmental compliance and enforcement, environmental justice, energy law issues, and public participation. He is a member-elect of the Executive Committee of the American Bar Association's Section of Environment, Energy and Resource, and he is a member of the International Union for the Conservation of Nature's Environmental Law Commission. From 1978 until 1999, Paddock was an Assistant Attorney General with the Minnesota Attorney General's Office where he served as Director of Environmental Policy for 13 years, as manager of the Office's Agriculture and Natural Resources Division, and as a member of its Executive Committee. He has served on several national panels, including the Aspen Institute's Series on Environment in the 21st Century and the American National Standard Institute's ISO 14000 Environmental Management Systems Council. He was a Senior Consultant for the National Academy of Public Administration for eight years. Paddock clerked for Judge Donald Lay of the U.S. Court of Appeals for the Eighth Circuit. His law degree is from University of Iowa Law School and his undergraduate degree is from University of Michigan.

Trip Pollard is a Senior Attorney with the Southern Environmental Law Center (SELC), a non-partisan, nonprofit organization that works at the federal level and in six states to protect the natural areas and resources of the South. He is the Director of SELC's Land and Community Program, which uses public education, policy reform, and legal advocacy to promote smarter growth and sustainable transportation. He has written dozens of reports and articles, and lectured widely on transportation, land use, energy, and environmental issues. He has served on numerous governmental commissions and advisory bodies, and he also serves on the board of many organizations.

Melissa Powers is a Jeffrey Bain Faculty Scholar and Professor of Law at Lewis & Clark Law School, and she was a Fulbright-Schuman Scholar in 2014-2015 researching Denmark's and Spain's renewable energy laws. She is also the Founder and Director of the Green Energy Institute at Lewis & Clark Law School, an organization that designs strategies to a transition to a zero-carbon energy system. Powers is a member-scholar of the Center for Progressive Reform and a board member of the Environmental Law Collaborative. She is the book review editor of *Transnational Environmental Law*, a peer-reviewed journal published by Cambridge University Press. She is a coauthor of the books *Climate Change and the Law* and *Principles of Environmental Law*. Recent book chapters and articles include: Lessons from U.S. Biofuels Policy: The Renewable Fuels Standard's Rocky Ride, in *The Law and Policy of Biofuels* (eds. Yves Le Boutillier, Annie Cowie, Paul Martin, & Heather McLeod-Kilmurray) (2016); Is that All There Is? The Surprising Value of Unenforceable Local Climate Action Plans, in *Rethinking Sustainable Development to Meet the Climate Change Challenge* (eds. Owley & Hirokawa) (2015); Quick Fixes or Real Remedies? The Benefits and Limitations of Climate and Energy Fast Policy, *San Diego Journal of Climate and Energy Law* (2017) (with Edward Jewell and Joni Sliger); and An Inclusive Energy Transition: Expanding Low-Income Access to Clean Energy Programs, *North Carolina Journal of Law and Technology* (2017).

David A. Repka is a retired Partner at Winston & Strawn LLP in Washington, D.C. Mr. Repka has over 35 years of experience in nuclear energy regulation and policy, administrative and appellate litigation, the National Environmental Policy Act, and federal regulatory compliance and enforcement related to nuclear power, radiological materials, and nuclear

waste disposal. He has also published articles and many blog posts on nuclear energy policy, regulation, and environmental and administrative law issues. He received his undergraduate degree in Physics from Northwestern University and his J.D. from the Georgetown University Law Center.

Nathan A. Rosenberg is a visiting scholar at the Harvard Food Law and Policy Clinic and an adjunct professor at the University of Iowa College of Law. Based in Iowa City, Iowa, his work focuses on inequality, food systems, and the environment. Prior to moving to Iowa, he was a visiting assistant professor in the Graduate Program in Agricultural & Food Law at the University of Arkansas School of Law, where he remains an adjunct professor. Nathan has also taught at New York University and worked as a consulting attorney for Earthjustice, a legal fellow for the Natural Resources Defense Council, and as director of the Delta Directions Consortium.

Jim Rossi is the Associate Dean for Research and Judge D.L. Lansden Professor of Law at Vanderbilt University Law School, where he teaches Energy Law and Renewable Power, and Tort Law. He is the founding coauthor of a leading energy law textbook, *Energy, Economics and the Environment* (Foundation Press, 4th edition 2015) (with Joel Eisen, Emily Hammond, David Spence, Jacqueline Weaver, and Hannah Wiseman), and is a coauthor of *New Frontiers of State Constitutional Law* (editor, with James Gardner) (Oxford University Press 2010) and *Regulatory Bargaining and Public Law* (Cambridge University Press 2005). His scholarly work addresses the overlap between public utility and environmental regulation, federalism topics related to energy markets and their regulation, and the challenges confronting new energy infrastructure. He has also published articles on coordination among regulators, public participation in agency decisions, judicial review, and state constitutional and administrative law. Rossi's work has appeared in *Harvard Law Review*, *Virginia Law Review*, *Cornell Law Review*, *Texas Law Review*, *Minnesota Law Review*, *Electricity Journal*, *Harvard Environmental Law Review*, and *Energy Law Journal*, among other journals. Prior to teaching, he practiced energy law in Washington, D.C. He also has served as a Visiting Professor at the Harvard and Texas law schools.

Charles R. Sensiba is a Partner at Troutman Sanders LLP in Washington, D.C. With nearly 20 years of practice focusing exclusively in the areas of hydropower licensing, relicensing, and administration, he has advised investor-owned utilities, state governmental entities, independent power producers, water districts, and hydropower developers on some of the most complex, highly visible, and contested hydropower projects in the United States. Sensiba is a national leader in hydropower policy and regulation, representing clients before FERC, other federal regulatory agencies, multiple U.S. Courts of Appeal, and the U.S. Supreme Court. He also represents clients before the U.S. Congress on federal policy issues affecting hydropower and is a recognized thought leader in energy and hydropower policy. Sensiba frequently speaks and writes on important and emerging issues facing hydropower, and he currently serves on the Board of Directors for the National Hydropower Association.

James Charles Smith is the John Byrd Martin Chair of Law Emeritus at the University of Georgia, where he has taught since 1984. He graduated from Saint Olaf College in 1974, majoring in Math and History. After graduation from University of Texas School of Law in 1977, he served as a Law Clerk for Judge Walter Ely on the U.S. Court of Appeals for the Ninth Circuit in Los Angeles. He then practiced law for four years with the law firm of Baker Botts in Houston, Texas, specializing in commercial real estate. In 1982, he left private practice to go into teaching. From 1982 to 1984, Professor Smith taught at the Ohio State University College of Law. His books include: *Friedman & Smith on Contracts and Conveyances of Real Property* (8th ed. 2017), *Property: Cases and Materials* (4th ed. 2018, with Profs. Larson and Nagle); *Real Estate Transactions: Problems, Cases, and Materials* (5th ed. 2017, with Prof. Malloy); *Federal Taxation of Real Estate* (2017, originally published 1985, with Prof. Samansky), and *Neighboring Property Owners* (2017, originally published 1988, with Prof. Hand). He has written numerous articles and book chapters dealing with property, housing, real estate transactions, commercial law, and taxation. He is a Fellow of the American College of Real Estate Lawyers and Department Editor of the American Bar Association magazine, Probate & Property.

Tyson R. Smith represents clients throughout the nuclear industry on licensing, compliance, and commercial matters. In support of clean energy goals and drawing on his technical background, he has been extensively involved in site selection, licensing, and development of power reactors and nuclear fuel facilities in the United States and internationally.

Amy L. Stein is a Professor of Law and University Term Professor at the University of Florida Levin College of Law (UF Law), nationally recognized for her research on energy policy, particularly with respect to federalism, the regulatory pro-

cess, and administrative law. Professor Stein's recent scholarship focuses on the complex governance issues associated with regulation of an evolving electric grid composed of more diverse and distributed energy resources, including solar, energy storage, and electric vehicles. She has also explored impacts on the reliability of the electric grid and the intersection of energy and environmental law. She teaches in the areas of energy law, environmental law, climate change, and torts. Professor Stein has presented her energy work across the country and internationally, in both academic and policy forums. She serves as the Chair of UF Law's Sustainability Committee and the Faculty Senate's University-wide Sustainability Committee. Her published scholarship focuses on the intersection of energy and environmental issues. Professor Stein began her academic career at George Washington University Law School and Tulane Law School. Prior to her academic appointments, she practiced as an Environmental and Litigation Associate for Latham & Watkins LLP in Washington, D.C. and Silicon Valley. She is a member of the District of Columbia, Illinois, and California state bars and a graduate of the University of Chicago (A.B.) and the University of Chicago Law School (J.D.).

Paul C. Stern is the President of the Social and Environmental Research Institute (USA) and Professor II at the Norwegian University of Science and Technology. Previously, he was a Principal Staff Officer at the U.S. National Academy of Sciences, Engineering, and Medicine working with the Advisory Committee to the U.S. Global Change Research Program, the Board on Environmental Change and Society, and other groups. His research on the determinants of environmentally significant behavior is reflected in the coauthored textbook *Environmental Problems and Human Behavior* (2d ed. 2002) and co-editorship of numerous National Academies reports on issues of human-environment interactions, including energy consumption and environmental risk management. He coauthored a paper in 2016, *Opportunities and Insights for Reducing Fossil Fuel Consumption by Households and Organizations*, that appeared in *Nature Energy*. Stern holds a B.A. from Amherst College and an M.A. and Ph.D. from Clark University, all in Psychology.

Michael A. Swiger is a Partner at Van Ness Feldman LLP in Washington, D.C., where he has practiced in the area of hydropower licensing and regulation for over 32 years. He represents a broad cross-section of entities with interests in hydropower development before federal agencies and the presidential administration, the U.S. Congress, and the federal courts. He has been involved in numerous agency rulemakings and legislative policy matters relating to hydroelectric licensing and environmental regulation. Swiger has written and spoken extensively on hydropower issues.

Melinda E. Taylor is a Senior Lecturer at the University of Texas School of Law, and Academic Director at the Kay Bailey Hutchison Center for Energy, Law, and Business. Taylor joined the faculty of the Law School in January 2006. Prior to joining the faculty, she was the director of the Ecosystem Restoration Program of Environmental Defense where she managed a staff of attorneys, scientists, and economists engaged in projects to protect endangered species and water resources across the United States. Taylor has also served as deputy general counsel of the National Audubon Society in Washington, D.C., and was an associate at Bracewell & Patterson in Washington, D.C. She received her undergraduate degree and J.D. from the University of Texas at Austin.

Elizabeth Trujillo is a Professor of Law at Texas A&M University (TAMU) School of Law, where she teaches Contracts, International Trade, Trends in International Law and Sustainable Development, and Trade, Investment, and Development. She is also Co-Convener of TAMU's new Global and Comparative Law Program and an Affiliated Faculty member with the TAMU Energy Institute. Her varied publications examine the relationship between international trade and investment with domestic regulatory structures, specifically in the areas of energy and the environment, sustainable development, and international consumer protection law. Professor Trujillo was awarded an Alexander von Humboldt Foundation Research Fellowship to write her book, *Reframing the Trade and Environment Linkage through Sustainable Development in a Fragmented World*, which will be published with Cambridge University Press in 2019. She has been a Visiting Scholar at the Max Planck Institute for Comparative Public Law and International Law in Heidelberg, Germany, and at Harvard Law School. In 2017, Professor Trujillo was elected to the American Law Institute and in 2018, to the Executive Council of the American Society of International Law

Michael P. Vandenbergh is the David Daniels Allen Distinguished Chair of Law at Vanderbilt University Law School. An award-winning teacher, Professor Vandenbergh has published numerous articles and book chapters on private environmental governance and household energy use. *Beyond Gridlock*, his article (with physicist Jonathan Gilligan) on private climate governance, won the Morrison Prize as the top sustainability article in North America in 2015. His book with

Professor Gilligan, *Beyond Politics: The Private Governance Response to Climate Change*, was published by Cambridge University Press in 2017. Prior to joining the Vanderbilt faculty, Vandenbergh was a Partner at Latham & Watkins in Washington, D.C., and he served as Chief of Staff of EPA from 1993-95. He has been a Visiting Professor at Harvard and the University of Chicago, and his research has been discussed in major media outlets such as National Public Radio's *All Things Considered*, *National Geographic*, USA Today, and the Washington Post.

James M. Van Nostrand is a Professor and Director of the Center for Energy and Sustainable Development at West Virginia University (WVU) College of Law. Before coming to WVU in July 2011, he spent three years as a member of the adjunct faculty at Pace Law School in White Plains, New York, and Executive Director of the Pace Energy and Climate Center. Prior to his transition to law school teaching, Van Nostrand had a successful career in private law practice as a Partner in the Environmental and Natural Resources practice group of two large law firms based in the Pacific Northwest, representing energy clients in state regulatory proceedings in eight western states, as well as proceedings before FERC. He was recognized by the Energy Bar Association as its 2007 State Regulatory Practitioner of the Year. At the WVU College of Law, Van Nostrand teaches courses in the areas of energy, environmental, and administrative law. In his role as Director of the Center for Energy and Sustainable Development, he is involved in various energy and environmental efforts in West Virginia and the Appalachian region, offering objective, unbiased research and policy analyses, and promoting policies that strike a proper balance between the development of energy resources and protection of environment. Van Nostrand received his LL.M. in Environmental Law from Pace Law School, his J.D. from University of Iowa College of Law, his master's degree in Economics from State University of New York at Albany, and an undergraduate degree in Economics from University of Northern Iowa.

Romany M. Webb is an Associate Research Scholar at Columbia Law School and Senior Fellow at the Sabin Center for Climate Change Law. Her research focuses on legal and policy tools to support climate change mitigation, particularly in the energy and transportation sectors. Key areas of focus include: (1) the regulation of greenhouse gas emissions from the energy and transportation sectors under U.S. federal and state law; (2) federal and state approaches to supporting clean energy development; and (3) international efforts to address climate change. Prior to joining Columbia Law School, Webb worked at the University of California, Berkeley Energy and Climate Institute, researching executive authority to combat climate change. She also completed a fellowship with the Kay Bailey Hutchison Center for Energy, Law, and Business at the University of Texas at Austin, where she researched energy policy, with a focus on options for minimizing the climate and other environmental impacts of energy development. The fellowship followed several years working in private practice in Sydney, Australia. Webb holds a Master of Laws, with a certificate of specialization in Environmental Law, from University of California, Berkeley. She also holds a Bachelor of Laws and Bachelor of Commerce (Economics), awarded with first class honors, from University of New South Wales (Australia).

Steven Weissman is the Co-Founder and former Director of the Energy Program at Berkeley Law. He currently teaches courses in energy law and policy at University of California, Berkeley's Goldman School of Public Policy and at Vermont Law School, and serves as Senior Policy Advisor at the Center for Sustainable Energy. He is a former administrative law judge and commissioner's advisor at the California Public Utilities Commission, former Principal Consultant to the California State Assembly's Natural Resources Committee, and former Legal Director at the Local Government Commission (an environmental policy nonprofit). Weissman is also a professional mediator. In 2013, he was a Fulbright Scholar in Spain, teaching energy law. In 2016, he taught at the European University Institute in Fiesole, Italy.

Jessica Wentz is a Senior Fellow and Associate Research Scholar at Columbia Law School's Sabin Center for Climate Change Law. Her work at the Center spans a variety of topics related to climate change mitigation and adaptation, sustainable development, and environmental justice. Much of her research focuses on how existing federal statutes, such as the CAA and NEPA, can be used to address the causes and impacts of climate change. Wentz previously worked as a Visiting Associate Professor and Environmental Program Fellow at George Washington University Law School. She holds a B.A. in International Development from University of California, Los Angeles, and a J.D. from Columbia Law School.

Sharon L. White is Of Counsel at Van Ness Feldman LLP in Washington, D.C., where she has practiced in the areas of hydropower and electric regulation since 2010. She regularly represents clients' interests in a range of hydroelectric regulatory proceedings, including licensing and relicensing, preliminary permits, license transfers and amendments, and

compliance matters. Complementing her hydroelectric practice, Sharon also assists electric industry clients on issues relating to the development and acquisition of power projects, market-based rate authorizations, cost-based rate tariffs, and related regulatory compliance.

James H. Williams is an Associate Professor of Energy Systems at the University of San Francisco, and the Director of the Deep Decarbonization Pathways Project for the Sustainable Development Solutions Network. A pioneer in the development of technically sophisticated long-term planning for the transition to a low carbon economy, he is the lead author of *Pathways to Deep Decarbonization the United States* and *Policy Implications of Deep Decarbonization in the United States*, which were key inputs to the Obama Administration's *Mid-Century Strategy for Deep Decarbonization*, the Risky Business coalition's *From Risk to Return: Investing in a Clean Energy Economy*, and Natural Resource Defense Council's *America's Clean Energy Frontier*. Previously, as Chief Scientist of the San Francisco consulting firm E3, Williams led similar studies of California that underlie key state and private sector energy and climate strategies. He received his B.S. in Physics from Washington and Lee University, and his Ph.D. in Energy and Resources from University of California, Berkeley.

Durwood Zaelke is the Founder and President of the Institute for Governance and Sustainable Development, and previously the Director of the Sierra Club Legal Defense Fund in Alaska and Washington, D.C. He is a co-founder of the Center for International Environmental Law, the Foundation for International Environmental Law & Development, the International & Comparative Environmental Law Program at American University, the International Program at Earthjustice, and the Policy, Legislation & Special Litigation Section and the Energy Conservation Section in the Environmental Division of DOJ. Zaelke is a coauthor of the leading law school textbook *International Environmental Law* \mathcal{C} *Policy* (University Casebook Series) and a coauthor of *Reducing Abrupt Climate Change Risk Using the Montreal Protocol and Other Regulatory Actions to Complement Cuts in CO₂ Emissions* (PNAS 2009). He is a graduate of Duke Law School and University of California, Los Angeles.

Avi B. Zevin is an Attorney at the Institute for Policy Integrity at New York University School of Law, a think-tank dedicated to improving the quality of government decisionmaking through academic scholarship, participation in the rulemaking process, and litigation. At the Institute, Zevin focuses on energy policy, electric market design, clean air and climate regulation, and the regulatory process. Previously, he was an Associate at Van Ness Feldman LLP in Washington, D.C., where he provided strategic advice, legal advocacy, and policy analysis to a diverse set of clients in the energy and transportation sectors, including clean energy businesses and associations, electric utilities, automakers, and Fortune 100 companies. He holds a J.D., *magna cum laude*, from New York University School of Law, an M.P.A. from the Harvard Kennedy School of Government, and a B.A., with high honors, from University of California, Berkeley.

Acknowledgments

This book is the result of a great deal of hard work by many people. We first thank our chapter authors, all of whom contributed their extraordinary expertise in researching and writing their chapters, and bore with us as we went through several drafts of their outlines and chapter texts.

Rachel Jean-Baptiste managed the publication process for the Environmental Law Institute (ELI), including supervising a legion of copy editors, assembling the indexes of recommendations, paying attention to every detail, and gently but firmly pestering many people for many things to get the book done. We are also grateful to the following people from ELI for their contributions and support: Jay Austin, John Pendergrass, and William J. Straub.

This book builds on the Deep Decarbonization Pathways Project (DDPP) of the Sustainable Development Solutions Network and the Institute for Sustainable Development and International Relations (IDDRI), and in particular on its United States volumes. We are grateful for DDPP's collaboration and support. Members of the DDPP team, in particular James H. Williams, Ryan Jones, Gabe Kwok, David Ismay, and Ben Haley, reviewed each chapter, responded to questions from authors, and provided invaluable technical input.

Each chapter was peer-reviewed by several people. We thank the following peer reviewers for their invaluable assistance: Daniel Adamson, David Adelman, Jeff Alson, Adell Amos, Nicholas Ashford, David Bookbinder, Richard Caperton, Hannah Chang, David Cleaves, Andrew deLaski, Ethan Elkind, Michael Geller, Robert Grey, Emily Hammond, David Hayes, Michael Hindus, David Hodgkinson, J. Cullen Howe, David Hunter, Mark M. Jaffe, Robert A. James, William M. Keyser, Ray Kopp, Dean Korsak, Jonathan Krones, Therese Langer, James N. Levitt, Yael Lifshitz, Janet McCabe, James Murray, John R. Nolon, Adam Orford, Curtis Probst, Bill Rawson, Arnold Reitze, Nathan Richardson, Ethan Rogers, Bob Rubin, Noah Sachs, James Salzman, Ethan Shenkman, Steven Silverman, Richard Singleton, Eleanor Stein, Jeffrey Steiner, Edward L. Strohbehn, Jr., Gina Warren, and Michael Webber. Additionally, several chapter authors reviewed and commented on others' chapters.

L. Margaret Barry, J. Cullen Howe, Cameron Jones, and Nathan Berry helped with cite checking.

Columbia University's Center for Global Energy Policy contributed funds to defray some logistical expenses for two workshops of the chapter authors.

Michael Gerrard thanks his colleagues at Columbia Law School's Sabin Center for Climate Change Law and at the University's Earth Institute for their assistance and support throughout this project, and his faculty assistant, Adefisayo Adetayo, for her cheerful and diligent help. Most importantly, he wants to thank his wonderful family—Barbara, David, William, Grace, Anya, and Amelia—for their love and support, and their tolerance for long hours at the computer screen or otherwise absent. Amelia arrived as this book was nearing completion, but she and her generation have the greatest stakes in the success of the decarbonization effort.

John Dernbach thanks his colleagues at Widener University Commonwealth Law School, and particularly Dean Christian Johnson, for their support. He also thanks faculty secretary Jeremy Wingert for his humor and good work. He continues to be grateful for the friendship and sage advice of Fred Cheever, a contributor to this book, who died suddenly in the middle of this project. John's wife, Kathy, has been extraordinarily patient and supportive, even though this project involved many late nights and long weekends, and a good deal more time and effort than anticipated. Daughters Becky and Tess and son-in-law Ethan have also been supportive. In the early stages of their careers, they remind us why we started this book project in the first place.

> Michael B. Gerrard John C. Dernbach

List of Acronyms

AEA	Atomic Energy Act
AFV	alternative fuel vehicle
AIA	American Institute of Architects
BAT	best available technology
BACT	best achievable control technology
BLM	Bureau of Land Management
BOEM	Bureau of Ocean Energy Management
CAA	Clean Air Act
CCS	carbon capture and sequestration
CEQ	Council on Environmental Quality
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CES	clean energy standard
CFC	chlorofluorocarbon
CO_2	carbon dioxide
CO,eq	carbon dioxide equivalent
CRP	Conservation Reserve Program
CSP	Conservation Stewardship Program
DAC	direct air capture
DDPP	Deep Decarbonization Pathways Project
DG	distributed generation
DOE	U.S. Department of Energy
DOI	U.S. Department of the Interior
DOJ	U.S. Department of Justice
DOT	U.S. Department of Transportation
DPF	diesel particulate filter
EERS	energy-efficiency resource standard
EIS	environmental impact statement
EISA	Energy Independence and Security Act
EPA	U.S. Environmental Protection Agency
EPAct 2005	Energy Policy Act of 2005
EPCA	Energy Policy and Conservation Act
EQIP	Environmental Quality Incentives Program
ESA	Endangered Species Act
ETS	emissions trading scheme
EU	European Union
EVs	electric vehicles
FAA	Federal Aviation Administration
FAST	Fixing America's Surface Transportation Act
FCIC	Federal Crop Insurance Corporation
FERC	Federal Energy Regulatory Commission
FHA	Federal Housing Administration
FHwA	Federal Highway Administration
FITs	feed-in tariffs
FONSI	finding of no significant impact
FPA	Federal Power Act

FSA	Farm Service Agency
FWS	U.S. Fish and Wildlife Service
GATT	General Agreement on Tariffs and Trade
GHG	greenhouse gas
Gt	gigaton
GWP	global warming potential
HCFC	hydrochlorofluorocarbon
HDVs	heavy-duty vehicles
HFC	hydrofluorocarbon
HFCV	hydrogen fuel cell vehicle
HUD	U.S. Department of Housing and Urban Development
ICAO	International Civil Aviation Organization
IMO	International Maritime Organization
IPCC	Intergovernmental Panel on Climate Change
ISO	independent system operator
KWh	kilowatt hours
LAER	lowest achievable emissions rate
LCCP	life-cycle climate performance
LCRs	local content requirements
LDVs	light-duty vehicles
LEED	Leadership in Energy and Environmental Design
LFG	landfill gas
LWR	light water reactor
M&V	measurement and verification
MEPS	minimum efficiency performance standards
MMT	million metric tons
MPOs	metropolitan planning organizations
MWh	megawatt hours
NAFTA	North American Free Trade Agreement
NEPA	National Environmental Policy Act
NETs	negative emissions technologies
NGCC	natural gas combined cycle
NHTSA	National Highway Traffic Safety Administration
NPDES	national pollutant discharge elimination system
NRC	Nuclear Regulatory Commission
NRCS	Natural Resources Conservation Service
NSPS	new source performance standards
PAB	private activity bond
PACE	property assessed clean energy
PHMSA	Pipeline and Hazardous Materials Safety Administration
PM	particulate matter
PPA	power purchase agreement
PTC	production tax credit
PUC	public utilities commission
PURPA	Public Utility Regulatory Policies Act
PV	photovoltaic
R&D	research and development
RCRA	Resource Conservation and Recovery Act

RD&D	research, development, and demonstration
RFS	Renewable Fuel Standard
RMA	Risk Management Agency (USDA)
RPS	renewable portfolio standard
RTO	regional transmission organization
SFO	sustainable finance organization
SIP	state implementation plan
SMR	small modular reactor
SWPA	Southwestern Power Administration
TNCs	transportation network companies
TOD	transit-oriented development
TPO	third-party ownership
TVA	Tennessee Valley Authority
UNFCCC	United Nations Framework Convention on Climate Change
USDA	U.S. Department of Agriculture
USFS	U.S. Forest Service
VMT	vehicle miles traveled
WAPA	Western Area Power Administration
ZEB	zero-energy building
ZEV	zero-emission vehicle
ZNE	zero net energy